Advertisement

Cooperative E-Organizations for Distributed Bioinformatics Experiments

  • Andrea Bosin
  • Nicoletta Dessì
  • Mariagrazia Fugini
  • Barbara Pes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5326)

Abstract

Large-scale collaboration is a key success factor in today scientific experiments, usually involving a variety of digital resources, while Cooperative Information Systems (CISs) represent a feasible solution for sharing distributed information sources and activities. On this premise, the aim of this paper is to provide a paradigm for modeling scientific experiments as distributed processes that a group of scientists may go through on a network of cooperative e-nodes interacting with one another in order to offer or to ask for services. By discussing a bioinformatics case study, the paper details how the problem solving strategy related to a scientific experiment can be expressed by a workflow of single cooperating activities whose implementation is carried out on a prototypical service-based scientific environment.

Keywords

E-organizations Cooperative Information Systems Bioinformatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meersman, R., Tari, Z. (eds.): Proceedings of the 15th International Conference on Cooperative Information Systems, Vilamoura, Portugal, November 28-30 (2007)Google Scholar
  2. 2.
    Bosin, A., Dessì, N., Fugini, M.G., Liberati, D., Pes, B.: Applying Enterprise Models to Design Cooperative Scientific Environments. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 281–292. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Berman, F., Fox, G., Hey, T. (eds.): Grid Computing: Making the Global Infrastructure a Reality. John Wiley and Sons, Inc., New York (2003)Google Scholar
  4. 4.
    De Roure, D., Gil, Y., Hendler, J.A. (eds.): IEEE Intelligent Systems, Special Issue on E-Science, vol. 19(1) (2004)Google Scholar
  5. 5.
  6. 6.
    Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web services - Concepts, architectures, and applications. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  7. 7.
    Pollock, J.T., Hodgson, R.: Adaptive Information: Improving Business Through Semantic Interoperability, Grid Computing, and Enterprise Integration. Wiley Series in Systems Engineering and Management. Wiley-Interscience, Chichester (2004)CrossRefGoogle Scholar
  8. 8.
    Travica, B.: Virtual organization and electronic commerce. ACM SIGMIS Database 36(3) (2005)Google Scholar
  9. 9.
    Singh, M., Huhns, M.: Service-oriented computing: Semantics, processes, agents. Wiley, Chichester (2005)Google Scholar
  10. 10.
    Hardimann, G.: Microarray methods and applications: Nuts & bolts. DNA Press (2003)Google Scholar
  11. 11.
    Bosin, A., Dessì, N., Liberati, D., Pes, B.: Learning Bayesian Classifiers from Gene-Expression MicroArray Data. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS (LNAI), vol. 3849, pp. 297–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Bosin, A., Dessì, N., Pes, B.: High-Dimensional Micro-array Data Classification using Minimum Description Length and Domain Expert Knowledge. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 790–799. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Bosin, A., Dessì, N., Pes, B.: Capturing Heuristics and Intelligent Methods for Improving Micro-Array Data Classification. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 790–799. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Armstrong, E., et al.: The J2EE 1.4 Tutorial (2004)Google Scholar
  15. 15.
    Oracle database 10g enterprise edition, http://www.oracle.com
  16. 16.
  17. 17.
    Oinn, T.: Xscufl Language Reference, European Bioinformatics Institute (2004), http://www.ebi.ac.uk/~tmo/mygrid/XScuflSpecification.html
  18. 18.
    Golub, T.R., et al.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)CrossRefGoogle Scholar
  19. 19.
    Yeoh, E.J., et al.: Classification, subtype discovery, and prediction outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1 (2002)Google Scholar
  20. 20.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrea Bosin
    • 1
  • Nicoletta Dessì
    • 1
  • Mariagrazia Fugini
    • 2
  • Barbara Pes
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità degli Studi di CagliariCagliariItaly
  2. 2.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations