Advertisement

Urban Metabolism and the Surface of the City

  • Clemens Deilmann
Chapter
Part of the German Annual of Spatial Research and Policy book series (GERMANANNUAL)

Building, maintaining, and changing the urban fabric not only consumes and accumulates great quantities of material and energy resources, but also requires large capital investments. The biggest share of primary energy consumption is caused by building use and access (traffic). In Germany, building activities account for a 10% share of annual total gross domestic product, the flow. The net noncurrent asset represented by residential buildings, the stock, holds 50% of all noncurrent assets, and the non-residential building stock accounts for an additional 35%. Furthermore, the “urban fabric” is itself a source and prerequisite for human activities and progress of growingly urbanized societies. The competitiveness of societies will depend on how efficient the stocks and flows of the urban fabric are managed and on the ability to adapt the urban fabric to change.

Keywords

Housing Stock Building Stock Technical Infrastructure Urban Fabric Material Flow Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Automata – A Case Study of the Dresden City Region since 1780. In: Filho L.; Gomez, M.; C. Rautenstrauch (eds.), Second International ICSC Symposium on Information Technologies in Environmental Engineering, Proceedings. Aachen, 349-364.Google Scholar
  2. Baccini P. and Brunner P. H. (1991): Metabolism of the Anthroposphere. New York: Springer.Google Scholar
  3. Bergsdal H., Brattebø H., Bohne R. A., Müller D. B. (2007): Dynamic Material Flow Analysis for Norway’s Dwelling Stock. Building Research & Information (accepted for publication).Google Scholar
  4. Bohne R. A., Bergsdal H., Brattebø H. (2007): Dynamic eco-efficiency projections for C&D waste recycling strategies at city level. Journal of Industrial Ecology, 11(3) (in press).Google Scholar
  5. Bringezu S., Moriguchi Y. (2002): Material Flow Analysis. In: R. U. Ayres and L. Ayres (eds.).Google Scholar
  6. Brunner P. H. (2007): URBANMET – Urban fabric towards sustainable urban metabolism. Proposal part B to Work programme ENV.2007.2.1.5.1, FP76-ENV2007-1.Google Scholar
  7. Buchert M. et al. (2003): Sustainable building and housing in Germany: Material-flow-related components for a national sustainable development strategy ,linking the building and housing sector with the complementary area of ,public infrastructure‘ - Final report UFOPLAN-No. 298 92 303/02, in cooperation with IOER and TU Dresden, Darmstadt/Dresden, July 2003 (publication in the ,Texte‘ series of the Federal Environmental Agency (UBA). UBA (2004), Nachhaltiges Bauen und Wohnen in Deutschland, UBA-Texte, No. 01, Berlin).Google Scholar
  8. Daxbeck H., Lampert C., Morf L., Obernosterer R., Rechenberger H., Reiner I., Brunner P. H. (1996): Der anthropogene Stoffhaushalt der Stadt Wien. (Projekt PILOT). Technische Universität Wien. Institut für Wassergüte und Abfallwirtschaft. Abteilung Abfallwirtschaft. Wien.Google Scholar
  9. Daxbeck H., Kilialova A., Obernosterer R. (2001): Der ökologische Fußabdruck der Stadt Wien, Ressourcen Management Agentur (RMA). Final report, commissioned by Magistratabteilung 22 – Umweltschutz der Stadt Wien. Wien.Google Scholar
  10. Deilmann C. et al. (2005): Kommunales Stoffstrommodell Wohnen – Szenarien 2020 für den Wohnungsbestand am Beispiel zweier disparater kommunaler Entwicklungen. Final report. Dresden: IOER.Google Scholar
  11. Deilmann C., Gruhler K., Böhm R. (2005): Stadtumbau und Leerstandsentwicklung aus ökologischer Sicht. München: Oekom Verlag, 103.Google Scholar
  12. Deilmann C., Gruhler K. (2005): Stoff- und Energieflüsse von Gebäuden und Infrastrukturen als Grundlage für ein vorausschauendes szenariogeleitetesStoffstrommanagement. Österreichische Wasser- und Abfallwirtschaft, No. 7-8, 103-109.Google Scholar
  13. Deilmann C. et al. (2001): Nachhaltige Entwicklung des Wohnungsbestandes in sächsischen Groß- und Mittelstädten: Entwicklungsszenarien ausgewählter Wohngebiete unter ressourcen- und nutzungsorientierten Aspekten (NAWO). Final report. http://www.ioer.de/Nawo
  14. Duhme F. and Pauleit St. (1999): Stadtstrukturtypen – Bestimmung der Umweltleistungen von Stadtstrukturtypen für die Stadtplanung. In: Raumplanung, No. 4, 33-44.Google Scholar
  15. European Topic Centre on Resource and Waste Management (2005): Environmental Input-Output Analyses based on NAMEA data. A comparative European study on environmental pressures arising from consumption and production patterns. Copenhagen: GOV/TDPC/URB, 1.Google Scholar
  16. Gruhler K. et al. (2002): Stof?ich-energetische Gebäudesteckbriefe – Gebäudevergleiche und Hochrechnungen für Bebauungsstrukturen, IÖR-Schriften No. 38. Dresden, 307Google Scholar
  17. Handbook of Industrial Ecology. Cheltenham: Edward Elgar Publishing, 79-90.Google Scholar
  18. Holck-Steen N., Bergsdal H., Brattebø H. (2007): Systems Analysis of Floor Area, Material and Life Cycle Energy Flows for the Norwegian Dwelling Stock in the Period 1960-2050. Building Research & Information (submitted for publication).Google Scholar
  19. Kennedy C. A. (2003): Estimating the urban metabolism of Canadian cities: Greater Toronto Area case study. Canadian Journal of Civil Engineering Vol. 30, Part 2.Google Scholar
  20. Kohler N., Schwaiger B., Barth B., Koch M. (1999a): Mass Flow, Energy Flow and Costs of the German Building Stock. http://www.i?b.uni-karlsruhe.de/web
  21. Lowe R.J. (2001): Reducing Carbon Emission from the Building Stock – A Review of technical Potential, Barriers to Change and Policy Instruments. Paper commissioned for IEA/OECD Workshop on the design of Sustainable Buildings Policies, Paris, June 2001.Google Scholar
  22. Meinel G., Herold H., Hecht R. (2006): Automatische Ableitung siedlungsstruktureller Grundlagendaten auf Basis digitaler Bildverarbeitung, GIS und räumlicher Statistik, In: Strobl, Blaschke, Griesebner (eds.), Angewandte Geoinformatik 2006, Beiträge zum 18. AGIT-Symposium Salzburg, 423-429.Google Scholar
  23. Michel U., Ehlers M., Bohmann G., Tomowski D. (2006): Advanced Fusion Techniques for Automated Detection of Settlement Areas, in: Proceedings ISPRS Mid-Term Symposium: „From Pixels to Processes“ at ITC, the Netherlands, 2006.Google Scholar
  24. Moll S., Bringezu S, Schütz S. (2003): Resource Use in European Countries. European Topic Centre on Waste and Material Flows. Copenhagen, March 2003.Google Scholar
  25. Moll S., Bringezu S., Schütz S. (2005): Resource Use in European Countries. An estimate of materials and waste streams in the Community, including imports and exports using the instrument of material flow analysis. Wuppertal Report No. 1. Wuppertal: Wuppertal Institut.Google Scholar
  26. Moll S., Vrgoc M., Watson D., Femia A., Gravgard Pedersen O., Villanueva A. (2006): A comparative European Study on Environmental Pressures Arising from Consumption and Production Patterns Employing Environmental Input-Output Analysis. Toronto.Google Scholar
  27. Müller D. B. (2006): Stock dynamics for forecasting material flows – Case study housing in the Netherlands. In: Ecological Economics Vol. 59, No. 1, 142-159.CrossRefGoogle Scholar
  28. OECD (2005): Towards the Sustainable Use of Building Stock: Final Synthesis Report.Google Scholar
  29. Rovers R. (2004): Existing Buildings, a Hidden Resource, Ready for Mining. Paper presented at the OECD workshop on Sustainable Buildings in Tokyo, January 2004.Google Scholar
  30. Schiller G. (2007): Urban Infrastructure – Challenges for Resource Efficiency in the Building Stock. BRI, June 2007.Google Scholar
  31. Siedentop S., Schiller G., Gutsche J.-M., Koziol M., Walther J. (2006): Siedlungsentwicklung und Infrastrukturfolgekosten – Bilanzierung und Strategieentwicklung. Forschungsprojekt im Auftrag des Bundesamtes für Bauwesen und Raumordnung sowie des Bundesministeriums für Verkehr, Bau- und Wohnungswesen. Final report. (BBR-online-publication).Google Scholar
  32. Thinh N. X., Vogel R. (2005): Modelling Urban Land Use Dynamics with GIS and Cellular.Google Scholar
  33. URBANMET (2007): Urban Fabric towards Sustainable Urban Metabolism, Proposal for ENV 2007.2.1.5.1. Area: Urban development, Coordinator Clemens Deilmann, with main contributions from Helge Brattebø, Stefan Brigezu, Paul Brunner, Susanne Kytzia.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Clemens Deilmann

    There are no affiliations available

    Personalised recommendations