Skip to main content

Exploration of our Solar System

  • Chapter
Future Spacecraft Propulsion Systems

Part of the book series: Springer Praxis Books ((ASTROENG))

  • 2263 Accesses

Abstract

Distances to places within our Solar System in Chapter 1 (see Figure 7.2) provided a yardstick to measure human ambition. At its speed (about 300,000 km/s), light traveling from the Earth to Pluto would reach it (in the average) in 5.45 hours. The highest speed reached by human handicraft is probably the Cassini-Huygens probe while traveling to Saturn in 2004 at about 40 km/s, or 7,500 times less than the speed of light. The minimum δV needed to reach destinations in our Solar System are extremely small when compared with the speed of light (see Figure 7.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7.25 Bibliography

  • Aerospace America (1989) “Nuclear thermal rockets: next step into space”, by S.K. Borowski, E.A. Gabris, and J. Martinell, p. 17; “The beginnings”, by R.J. Bohl, W.L. Kirk, and R.R.Holman, p.18; “Mars mission safety”, by D.Buden, p.22, June 1989.

    Google Scholar 

  • Aerospace America (2000) Joint Propulsion Meeting Program, April 2000, pp.B64 and B70.

    Google Scholar 

  • Aerospace America (2004) Roundtable discussion on NP, November 2004; see it also at: http://boss.streamos.com/wmedia/federal/aiaa/aiaa081004.wvx

    Google Scholar 

  • Alta (2003) “Technology and System Options towards Megawatt Level Electric Propulsion”, Proceedings of the International Workshop held on 9–10 June 2003, Lerici, Italy. CDROM available from alta@alta-space.com

    Google Scholar 

  • Andrenucci, M.(2004) “Prospective Needs and Technology Options for High Power Devices”, Paper presented at the International Symposium on Energy Conversion Fundamentals, 21–25 June 2004, Istanbul. Also available from alta@alta-space.com

    Google Scholar 

  • Asker, J.R. (1991) “Nuclear Rockets Gain Support for Propelling Mars Mission”, Aviation Week & Space Technology, March 18, 1991, pp.24–25.

    Google Scholar 

  • ASPL (2000) http://spacsun.rice.edu/aspl/

    Google Scholar 

  • Atwell, W., Nealy, J., and Clowdsley, M. (2006) “Space Radiation Exposure Mitigation: Study of Selected Materials”, SAE 2006, Transactions Journal of Aerospace, Vol.115–1, pp.226–233.

    Google Scholar 

  • Augelli, M., Bignami, G., Bruno, C., Calligarich, E., De Maria, G., Mulas, M., Musso, C., Pellizzoni, A., Piperno, W., Piva, R., Procacci, B., Rosa-Clot, M., and Rubbia, C. (1999) “Report of the Working Group on a Preliminary Assessment of a New Fission Fragment Heated Propulsion Concept and its Applicability to Manned Missions to the Planet Mars (Project 242)”, ASI Internal Report, Roma, March 15, 1999 (proprietary).

    Google Scholar 

  • Auweter-Kurtz, M., and Kurtz, H. (2003) “High Power and High Thrust Density Electric Propulsion for In-Space Transportation”, in Proceedings of the International Workshop Technology and System Options towards Megawatt Level Electric Propulsion, June 9–10, Lerici, Italy. Available at alta@alta-space.com (CD-ROM only).

    Google Scholar 

  • Auweter-Kurtz, M., and Kurtz, H. (2005) “High Power and High Thrust Density Electric Propulsion for In-Space Transportation”, paper IAC-05-C3.5-C4.7.05, presented at the 56th International Astronautical Congress (IAC), October 16–21, Fukuoka, Japan.

    Google Scholar 

  • Auweter-Kurtz, M., and Kurtz, H. (2008) “High Power And High Thrust Density Electric Propulsion For In-Space Transportation”, in C. Bruno (Ed.), Nuclear Space Power and Propulsion Systems, Progress in Aeronautics and Astronautics Series, Vol.225, AIAA, Reston VA, Chapter 4.

    Google Scholar 

  • Backhaus, S., Tward, E., and Petach, M. (2004) “Traveling-wave Thermoacoustic Electric Generator”, Applied Physics Letters, Vol.85, No.6, pp.1085–1087.

    Article  Google Scholar 

  • Baggett, R., and Dankanich, J. (2004) “Electric Propulsion”, Aerospace America, December, pp.58–59.

    Google Scholar 

  • Bates, J.(2003) “NASA Science Chief Lays Out Need for New Propulsion System”, Space News, June 9, 2003, p.8.

    Google Scholar 

  • Beale, G.A., and Lawrence, T.J. (1989) “Nuclear propulsion for orbital transfer”, Aerospace America, June, pp.27–29.

    Google Scholar 

  • Bennett, G.L. (1998) “Lessons of Space Nuclear Power”, Aerospace America, July, pp.32–40.

    Google Scholar 

  • Bennett, G.L., and Miller, T.J. (1993) “Progress Report on Nuclear Propulsion for Space Exploration and Science”, AIAA Paper, AIAA, Renton, VA.

    Google Scholar 

  • Berger, B.(2005a) “NASA Sacrifices Hubble, JIMO to Focus on Moon-Mars Vision”, Space News, February 14, 2005, pp.8–9.

    Google Scholar 

  • Berger, B.(2005b) “Griffin Praised for Putting Europa Mission Back on the Table”, Space News, May 23, 2005, p.6.See also the Editorial in Space News of May 30, 2005, p.18.

    Google Scholar 

  • Bidault, C., Bond, R., and Sweet, D. (2004) “Assessment of Electric Propulsion Systems for Exploration Missions: Comparison between Solar-Electric and Nuclear-Electric Propulsion Systems”, AURORA Final Report to ESA-ESTEC, July 15, 2004.

    Google Scholar 

  • Bohl, R.J., Kirk, W.L., and Holman, R.R. (1989) “The Beginnings”, Aerospace America, June, pp.18–22.

    Google Scholar 

  • Bond, A., Martin, A.R., Grant, R.A., and Lawton, T.J. (1978) “Project Daedalus”, J. British Interplanetary Society, Vol.31(supplement).

    Google Scholar 

  • Bond, R.(2002) “Nuclear Propulsion-Options and Choices”, Paper presented at the European Science Foundation Workshop on Nuclear Propulsion, Rome, Italy, May 10–11, 2002. Available from Robert.Bond@aeat.co.uk

    Google Scholar 

  • Bordi, F., and Taylor, R. (2003) “The Jupiter Icy Moon Orbiter Mission”, in Proceedings of the International Workshop “Technology and System Options towards Megawatt Level Electric Propulsion”, June 9–10, 2003, Lerici, Italy. Available from alta@alta-space.com. CD-ROM only.

    Google Scholar 

  • Borowski, S.K., Gabris, E.A., and Martinell, J. (1989) “Nuclear Thermal Rockets: Next Step to Space”, Aerospace America, June, pp.16–18.

    Google Scholar 

  • Borowski, S.K., Corban, R.R., Culver, D.W., Buhlman, M.J., and McIlwain, M.C. (1994) “A Revolutionary Lunar Space Transportation System Architecture Using Extraterrestrial LOX-Augmented NTR Propulsion”, AIAA paper 94-3343, presented at the 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Indianapolis, IN, June 27–29, 1994.

    Google Scholar 

  • Borowski, S.K., Dudzinski, L.A., and McGuire, M.L. (1998) “Nuclear Thermal Rocket (NTR) Propulsion for Tomorrow’s Moon/Mars Space Transportation Systems-Revolutionary Performance through Evolutionary Development”, IAA Paper IAA-98-IAA.13.1.01, presented at the 49th IAF Congress, Melbourne, Sept. 28–Oct. 2, 1998. Also: NASA TM 1998-208826, December 1998.

    Google Scholar 

  • Borowski, S.K., Dudzinski, L.A., and McGuire, M.L. (1999) “Artificial Gravity Vehicle Design Option for NASA’s Human Mars Mission Using ‘Bimodal’ NTR Propulsion”, AIAA paper AIAA-99-2545, presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Meeting, 20–24 June 1999, Los Angeles, CA.

    Google Scholar 

  • Borowski, S.K., Dudzinski, L.A., and McGuire, M.L. (2000) “Artificial Gravity Human Exploration Missions to Mars and Near Earth Asteroids Using ‘Bimodal’ NTR Propulsion”, Paper AIAA 2000-3115, presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Meeting, 16–19 July 2000, Huntsville, AL.

    Google Scholar 

  • Bottin, B., Carbonaro, M., Paris, S., Van der Haegen, V., Novelli, A., and Vennemann, D. (1998a) “The VKI 1.2 MW Plasmatron Facility for the Thermal Testing of TPS Materials”, Paper presented at the 3rd European Workshop on Thermal Protection Systems, ESA-ESTEC, 25–27 March 1998, Noordwjik, The Netherlands.

    Google Scholar 

  • Bottin, B., Carbonaro, M., Van der Haegen, Paris, S. (1998b) “Predicted and Measured Capability of the VKI 1.2 MW Plasmatron Regarding Re-entry Simulation”, in Proceedings of the Third European Symposium on Aerothermodynamics for Space Vehicles, edited by R.A. Harris, ESA Publication SP-426, Noordwijk., p. 553.

    Google Scholar 

  • Bruno, C.(2005) “Physics of Nuclear Propulsion — An Introduction”, Paper IAC-05-C3.5-C4.7.01, presented at the 56th International Astronautical Congress (IAC), 16–21 October 2005, Fukuoka, Japan.

    Google Scholar 

  • Bruno, C.(2008) “Nuclear Propulsion: An Introduction”, in: C. Bruno (Ed.), Nuclear Space Power and Propulsion Systems, Progress in Aeronautics and Astronautics Series, Vol.225, AIAA, Reston, VA.

    Google Scholar 

  • Bruno, C., and Giucci, S. (1999) “Cryogenic Technology to Improve Electric Thrusters”, IAF Paper IAF-99-S.4.04, presented at the 50th IAF Congress, 4–8 October 1999, Amsterdam. Also, Acta Astronautica, Vol.51, No.12 (2002), pp.855–863.

    Google Scholar 

  • Buffone, C., and Bruno, C. (2002) “Cooling the Rubbia’s Engine Nozzle in the Future Test Facility”, Paper ISTS 2002-a-22 presented at the 23rd International Science and Technology Space Symposium, Matsue, Japan, May 26–June 2, 2002.

    Google Scholar 

  • Buhlman, M.J., and Neill, T.M. (2000) “Simulated LOX-Augmented Nuclear Thermal Rocket (LANTR) Testing”, Paper AIAA 2000–3897 presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 16–19 July 2000, Huntsville AL.

    Google Scholar 

  • Buhlman, M.J., Neill, T.M., and Borowski, S.K. (2004) “LANTR Engine System Integration”, AIAA paper 2004–3864, presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 11–14, 2004, Fort Lauderdale, FL.

    Google Scholar 

  • Bussard, R.W., and DeLauer, R.D. (1958) Nuclear Rocket Propulsion, McGraw-Hill, New York.

    Google Scholar 

  • Casali, D. and Bruno, C.(2008) “Superconductivity”, in: Advanced Propulsion Systems and Technologies: Today to 2020, edited by C. Bruno and A. Accettura, AIAA Progress in Astronautics and Aeronautics, Vol.223, AIAA, Reston, VA, Chapter 11.

    Google Scholar 

  • Cataldo, R.L., and Borowski, S.K. (2004) “Propulsion and Surface Power Systems Commonality Issues for Human Exploration”, paper IAC-04-R.4-S.7.03, presented at the 54th Int. Astronautical Conference (IAC), Oct. 4–8, Vancouver, Canada.

    Google Scholar 

  • Chandler, D.(2008) “The Burger Bar that Saved the World”, Nature, Vol.453, No. 7199, June 26, pp.1165–1168.

    Google Scholar 

  • Chang Diaz, F.R. (2000) “The Vasimr Rocket”, Scientific American, Vol.283, No.5, p.72.

    Article  Google Scholar 

  • Chang Diaz, F R., Squire, J.P., Ilin, A.V., McCaskill, G.E., Nguyen, T.X., Winter, D.S., Petro, A.J., Goebel, G.W., Cassady, L., Stokke, K.A., Dexter, C.E., Carter, M.D., Baity, F.W., Barber, G.C., Goulding, R.H., Sparks, D.O., Schwenterly, S.W., Bengtson, R.D., Breizman, B.N., Jacobson, V.T., Sagdeev, R.Z., Karavasilis, K., Novakovski, S.V., Chan, A.A., Glover, T.W. (1999) “The Development of the VASIMR Engine”, Proceedings of the International Conference on Electromagnetics in Advanced Application, Turin, Italy, September 1999.

    Google Scholar 

  • Chang Diaz, F.R., Squire, J.P., Bengtson, R., Breizman, B.N., Baity, F.W., and Carter, M.D. (2000) “The Physics and Engineering of the VASIMR Engine”, AIAA paper 2000-3756, presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Meeting, 16–19 July 2000, Huntsville, Alabama.

    Google Scholar 

  • Chew, G., Pelaccio, D.G., Chiroux, R., Moton, T., and White, C. (2004) “Status and Assessment of the Indirect Nuclear Propulsion Concept”, AIAA paper 2004-3868, presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 11–14 July 2004, Fort Lauderdale, FL.

    Google Scholar 

  • Choi, C.Q. (2008) “Space Radiation Too Deadly for Mars Mission”, Space Com, March 31, 2008. Available at http://www.space.com/missionlaunches/080331-radiation-shielding.html

    Google Scholar 

  • Choueiri, E. (1998) “The Scaling of Thrust in Self-Field MPD Thrusters”, Journal of Propulsion and Power, Vol. 14, No. 5, pp. 744–753.

    Article  Google Scholar 

  • Choueiri, E. (2000) Personal communication.

    Google Scholar 

  • Claybaugh, W., Garriott, O.W., Garvey, J., Griffin, M., Jones, T.D., Kohlhase, C., McCandless II, B., O’Neil, W., and Penzo, P.A. (2004) “Extending the Human Presence into the Solar System”, in: www.planetary.org/aimformars/initiatives.html

    Google Scholar 

  • Collins, C. (2005) University of Texas-Dallas site, www.utdallas.edu/research/quantum/isomer/isomerPubl.htm

    Google Scholar 

  • Coppinger, R. (2008) “The Battle Goes on for Ares”, Flight International, August 12–18, 2008, pp. 22–23.

    Google Scholar 

  • Cronin, J.W., Gaisser, T.K., and Swordy, S.P. (1997) “Cosmic Rays at the Energy Frontier”, Scientifc American, Vol. 276, No. 7, January, pp. 32–37.

    Google Scholar 

  • David, L. (2002) “Nuclear Initiative Now Centerpiece of Planetary Effort”, Space News, February 11, 2002, pp. 8–9.

    Google Scholar 

  • Del Rossi, A., and Bruno, C. (2004) “Safety Aspects in Nuclear Space Propulsion”, Paper IAC-04-R.4/S.7.07, presented at the 55th International Astronautical Congress, Vancouver, 4–8 October, 2004.

    Google Scholar 

  • Del Rossi, A., and Bruno, C. (2008) “The Chernobyl Accident: A Detailed Account”, in: Nuclear Space Power and Propulsion Systems, edited by C. Bruno, AIAA Progress in Astronautics and Aeronautics, Vol. 225, AIAA, Reston, VA, Appendix B.

    Google Scholar 

  • Demyanko, Yu.G, Koniukov, G.V., Koroteev, A.S., Kuz’min, E.P. and Pavel’ev, A. (2001) Nuclear Rocket Engines, Norma Inform Publishers, Moscow [in Russian].Chapter 1 contains a short history of the nuclear rocket engine, ARD in Russian. Reactors developed are discussed in Chapter 3.

    Google Scholar 

  • Destefanis, R. (2008) “Radiation Shielding for Space Exploration: the MoMa Count Programme”, SAE paper 2008-01-2161, presented at the 38th International Conference on Environmental Systems (ICES), June 29–July 2, San Francisco, CA. Available at http://www.sae.org/ices

    Google Scholar 

  • Dewar, J.A. (2004) To the End of the Solar System: The Story of the Nuclear Rocket, The University Press of Kentucky, Lexington, KY.

    Google Scholar 

  • Donahue, B., and Cupples, M. (2000) “Comparative Analysis of Current Human Mars Mission Architectures”, AIAA Paper 2000-3215, presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Meeting, 16–19 July 2000, Huntsville, AL.

    Google Scholar 

  • Drake, B.G. (editor) (1998) “Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team”. NASA Exploration Office Document EX-13-98-036. Also in: http://wwwsn.jsc.nasa.gov/EXPLORE/addendum/LOA_For.htm and in: NASA Human Exploration of Mars: The Reference Mission of the Mars Exploration Study Team, 1997, including Addendum Version 3.0, NASA SP-607, June 1998.

    Google Scholar 

  • Dujarric, C. (1999) “An Innovative Hybrid Rocket Propulsion Concept for Take-Off from Planets and Interplanetary Missions”, IAF Paper 99-S.6.06, presented at the 50th IAF Congress, October 4–8, 1999, Amsterdam.

    Google Scholar 

  • Dujarric, C., Fratacci, G., and Valentian, D. (2000) “Hybridisation of Chemical, Nucleothermal and Electric Rocket Propulsion Principles: A Possible Way to Increase Rocket Specific Impulse?”, Paper IAF-00-S.6.02 presented at the 51st IAF Congress, Rio de Janeiro, October 2–6, 2000.

    Google Scholar 

  • Dunning, J., Sankovic, J. (1999) “NASA’s Electric Propulsion Program”, AIAA paper 99-2161, presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, June 20–24, 1999, Los Angeles, CA.

    Google Scholar 

  • Dyson, F. (1979) Disturbing the Iniverse, Harper and Row, New York [Chapter 10].

    Google Scholar 

  • Dyson, G. (2002) Project Orion, Allen Lane — The Penguin Press, London.

    Google Scholar 

  • Ewig, R. (2003) “Mini-MagOrion Program Document: Final Report”, Andrews Space & Technology Report AST-MMO-P-DC-02-2594, Seattle, WA, January.

    Google Scholar 

  • Ewig, R., and Andrews, D. (2003) “Mini-MagOrion: A Pulsed Nuclear Rocket for Crewed Solar System Exploration”, paper AIAA 2003-4525 presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 20–23, 2003, Huntsville, AL.

    Google Scholar 

  • Fearn, D. (2003) “The Prospects of MW Power Level Gridded Ion Thrusters”, in Proceedings of the International Workshop “Technology and System Options towards Megawatt Level Electric Propulsion”, June 9–10, 2003, Lerici, Italy. Available from alta@altaspace. com. CD-ROM only.

    Google Scholar 

  • Fearn, D. (2004) “The Application of Gridded Ion Thrusters to High Thrust, High Specific Impulse Nuclear-Electric Missions”, Paper IAC-04-R.4/S.7-09, presented at the 55th International Astronautical Congress, Vancouver, Canada, October 2–9, 2004.

    Google Scholar 

  • Fearn, D. (2005) “The application of ion thrusters to high thrust, high specific impulse nuclear-electric missions”, Paper IAC-05-C3.5-C4.7.04, presented at the 56th International Astronautical Congress (IAC), 16–21 October 2005, Fukuoka, Japan.

    Google Scholar 

  • Fearn, D.G. (2008) “Application of Ion Thrusters to High-Thrust, High-Specific-Impulse Nuclear Electric Missions”, in: C. Bruno (Ed.), Space Nuclear Propulsion and Power, Progress in Astronautics and Aeronautics Series, Vol. 225, AIAA, Reston, VA

    Google Scholar 

  • Flinn, E.D. (2004) “Can People Go to Mars?”, Aerospace America, May, pp. 22–23.

    Google Scholar 

  • Flora, M. (2005) Project Orion, www.islandone.org/Propulsion/ProjectOrion.html

    Google Scholar 

  • Gafarov, A.A., Gorshkov, O.A., Rozhdestvensky, N.M., Kudryashov, V.A., Skryabin, M.I., Bachmanov, M.M., and Fedotov, G.G. (2004) “Conceptual Project of the Interplanetary Spacecraft with Nuclear Power System and Electric Propulsion System for Radar Sounding of Ice Sheet of Europa, Jupiter Satellite”, paper IAC-04-R.4-S.7.02, presented at the 55th International Astronautical Congress (IAC), Vancouver, Canada, October 4–8.

    Google Scholar 

  • Gilles, J. (2004) “Britain Warms to European Space Exploration Plan”, Nature, Vol. 431, p.619.

    Google Scholar 

  • Glasstone, S. (1955) “Principles of Nuclear Reactor Engineering”, Van Nostrand, New York, Chapter X.

    Google Scholar 

  • Glenn, D.E., and Buhlman, M.J. (1999) “CFD Analysis of the LOX-Augmented Nuclear Thermal Rocket (LANTR)”, AIAA paper 99-2546, presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Meeting, June 20–24, 1999, Los Angeles, CA.

    Google Scholar 

  • Goldin, A.Ya., Koroteev, A.S., Semyonov, V.F., Konopatov, A.D., Pavshuk, V.A. and Ponomarev-Stepnoy, N.N. (1991) “Development of Nuclear Rocket Engines in the USSR”, paper presented at the AIAA/NASA/OAI Conference on Advanced Space Exploration Initiative (SEI) Technologies, 4–6 September 1991, San Diego, CA.

    Google Scholar 

  • Gunn, S.V. (2001) “Nuclear Propulsion—a Historical Perspective”, Space Policy, Vol. 17, No. 4, pp. 291–298. Reprinted with permission from Elsevier, copyright 1991.

    Article  MathSciNet  Google Scholar 

  • Gunn, S.V., and Ehresman, C.M. (2003) “The Space Propulsion Technology Base Established Four Decades Ago for the Thermal Nuclear Rocket is Ready for Current Applications”, Paper AIAA 2003-4590 presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 20–23 July 2003, Huntsville, AL.

    Google Scholar 

  • Hagen, R., and Scheffran, J. (2001) “Nuclear space—an indispensable option?”, Space Policy, Vol. 17, No. 4, pp. 261–264.

    Article  Google Scholar 

  • Hamilton, C.E. (2002) “Design Study of Triggered Isomer Heat Exchanger-Combustion Hybrid Jet Engine for High Altitude Flight”, US Air Force Institute of Technology PhD thesis, released as Report AIT/GAE/ENY/02-6.

    Google Scholar 

  • Hansson, A. (2001) “Nuclear Power and Propulsion in Space”, Space Policy, Vol. 17, No. 4, pp. 241–242.

    Article  MathSciNet  Google Scholar 

  • Harris, A. (2008) “What Spaceguard Did”, Nature, Vol. 453, No. 7199, June 26, pp. 1178–1179.

    Article  Google Scholar 

  • Hayatsu, K., Kobayashi, S., Hareyama, M., Yamashita, N., Sakurai, K., and Hasebe, N. (2008) “Radiation Dose Estimated in the Lunar Environment”, paper ISTS 2008-p-08, presented at the 26th International Symposium on Space Technology and Science (ISTS), Hamamatsu, Japan, June 1–8.

    Google Scholar 

  • Hill, P.G., and Peterson, C.R. (1970) Mechanics and Thermodynamics of Propulsion, 1st edn, Addison-Wesley, Reading, MA, Chapter 15.

    Google Scholar 

  • Howe, S.D. (1985) “Assessment of the Advantages and Feasibility of a Nuclear Rocket for a Manned Mars Mission”, Los Alamos National Laboratories Report LA-UR-85-2442.

    Google Scholar 

  • Howe, S.D. (2000) “Nuclear Rocket to Mars”, Aerospace America, August, p.39.

    Google Scholar 

  • Howe, S.D. (2001) “High Energy Density Propulsion—Reducing the Risk to Humans in Planetary Exploration”, Space Policy, Vol. 17, No. 4, pp. 275–284.

    Article  Google Scholar 

  • Howe, S.D., DeVolder, B., Thode, L., and Zerkle, D. (1998) “Reducing the Risk to Mars: the Gas Core Nuclear Rocket”, in Space Technology and Applications International Forum—1998, edited by Mohamed S. El-Genk, Publication CP-420, The American Institute of Physics, New York, p.1138.

    Google Scholar 

  • Hrbud, I. (2003) “Nuclear and Future Flight Propulsion”, Aerospace America, December, pp. 62–63.

    Google Scholar 

  • Iannotta, B. (2004) “NASA Funds Research on Very High-Power Electric Thrusters”, Space News, August 16, 2004, p.16.

    Google Scholar 

  • Ilin, A.V., Chang Diaz, F.R., Squire, J.P., and Carter, M.D. (1999) “Monte Carlo Particle Dynamics in a Variable Specific Impulse Magnetoplasma Rocket”, in Proceedings of the Open Systems’ 98 Meeting, Novosibirsk, July 1998; also in Transactions in Fusion Technology, Vol.35, pp.330–334.

    Google Scholar 

  • Ilin, A.V., Chang Diaz, F.R., Squire J.P., Breizman, F.W., Carter, M.D. (2000) “Particle Simulations of Plasma Heating in VASIMR”, AIAA paper 2000-3753, presented at 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 17–19, 2000, Huntsville, AL.

    Google Scholar 

  • Jarow, L. (2000) “Will a Killer Asteroid Hit the Earth?”, Time Magazine, April 10, 2000, pp. 50–51.

    Google Scholar 

  • Jones, L.J. (1992) “Nuclear Thermal Propulsion”, Aerospace America, December, p.28.

    Google Scholar 

  • Joyner, C. Russell, Phillips, J.E., Fowler, R.B., and Borowski, S.K. (2004) “TRITON: a TRImodal, Thrust Optimized, Nuclear Propulsion and Power System for Advanced Space Missions”, AIAA paper 2004-3863, presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 11–14 July 2004, Fort Lauderdale, FL.

    Google Scholar 

  • Ketsdever, A.D., Young, M.P., Pancotti, A.P., and Mossman, J.B. (2008) “An Overview of Advanced Concepts for Space Access”, USAF Research Laboratory Report AFRL-RZED-TP-2008-238, Edwards AFB, CA, June 6, 2008.

    Google Scholar 

  • Kinley, III, D. (Ed.) (2006) “Chernobyl Legacy: Health, Environmental and Socio-Economic Impacts”, International Atomic Energy Agency (IAEA), The Chernobyl Forum Report, Vienna, Austria, April.

    Google Scholar 

  • Koenig, D.R. (1986) “Experience Gained from the Space Nuclear Rocket Program (Rover)”, Los Alamos National Laboratories Report LA-10062-H, May.

    Google Scholar 

  • Koniukov, G.V., Petrov, A.I., Popov, S.A., Rachuk, V.S., Belogurov, Y.I., Mamontov, Yu.I., Fedik, I.I., D’yakov, Ye.K., Mogil’ny, I.A., Konovalov, V.A., et al. (2004) “Prototype of Atomic Rocket-IRGIT Reactor”, Atomic Energy, Vol.97, No.3, 173–177 [in Russian].

    Google Scholar 

  • Koppel, C.R., Valentian, D., Latham, P.M., Fearn, D., Bruno, C., and Nicolini, D. (2003) “Preliminary Comparison between Nuclear-Electric and Solar-Electric Propulsion Systems for Future Interplanetary Missions”, AIAA paper 2003–4689, presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 20–23 July 2003, Huntsville, AL.

    Google Scholar 

  • Koroteev, A.S., Prishletsov, A.B., Martishin, V.M., Pavelyev, A.A., Shcherbinin, V.P., Reshmin, A.I., and Iosilevskii, I.L. (2002) “Rocket Engines and Powerplants Based on Gas-core Nuclear Reactor”, edited by A.S. Koroteev, Mashinostroenie Publisher, Moscow (in Russian).

    Google Scholar 

  • Koroteev, A.S., Akimov, V.N., and Gafarov, A.A. (2007) “Development and Use of Space Nuclear Energetics in Russia”, Polyot (Flight), Vol.7, July, pp. 3–15 [in Russian].

    Google Scholar 

  • Larson, W.J., and Wertz, J.R. (Eds.) (1992) Space Mission Analysis and Design, Kluwer, Dordrecht, Section 11.4.

    Google Scholar 

  • Lawrence, T.J. (2005) “Nuclear thermal rocket propulsion systems”, Paper IAC-05-C3.5-C4.7.03, presented at the 56th International Astronautical Congress (IAC), 16–21 October 2005, Fukuoka, Japan.

    Google Scholar 

  • Lawrence, T.J. (2008) “Nuclear Thermal Rocket Propulsion Systems”, in: C. Bruno (Ed.), Nuclear Space Power and Propulsion Systems, Progress in Aeronautics and Astronautics Series Vol.225, AIAA, Reston, VA.

    Google Scholar 

  • Lawrence, T.J., Witter, J.K., and Humble, R.W. (1995) “Nuclear Rocket Propulsion Systems”, in Space Propulsion Analysis and Design, edited by R.W. Humble, G.N. Henry and W.J. Larson, McGraw-Hill, New York, Ch. 8, and also as otherwise cited.

    Google Scholar 

  • Lenard, R.X. (2001) “Societal Imperatives and the Need for Space Nuclear Power and Propulsion Systems”, Space Policy, Vol.17, No.4, pp.285–290.

    Article  Google Scholar 

  • Lenard, R.X. (2005) “Nuclear safety, Legal aspects and Policy Recommendations”, Paper IAC-05-C3.5-C4.7.06, presented at the 56th International Astronautical Congress (IAC), 16–21 October 2005, Fukuoka, Japan.

    Google Scholar 

  • Lenard, R.X. (2008) “Review of Reactor Configurations for Space Nuclear Electric Propulsion and Surface Power Considerations”, in: Nuclear Space Power and Propulsion Systems, edited by C. Bruno, AIAA Progress in Astronautics and Aeronautics, Vol.225, AIAA, Reston, VA, Ch.5.

    Google Scholar 

  • Mankins, J., and Mandell, H. (1999) “NASA’s Integrated Mars Reference Missions”, paper IAA-99-IAA.13.3.01 presented at the 50th International Astronautical Congress (IAC), October 4–8, Amsterdam, The Netherlands.

    Google Scholar 

  • Maise, G., Powell, J.R., Paniagua, J., Ludewig, H., and Todosow, M. (2000) “Compact Ultra Lightweight Nuclear Thermal Propulsion Systems for Interplanetary Space Missions”, IAC paper presented at the 51st International Astronautical Congress, October 2–6, Houston, TX.

    Google Scholar 

  • McGuire, M.L., Borowski, S.K., and Packard, T.W. (2004) “Nuclear Electric Propulsion Application: RASC Mission Robotic Exploration of Venus”, AIAA paper 2004-3891, presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 11–14 July 2004, Fort Lauderdale, FL.

    Google Scholar 

  • Mensing, A.E., and Latham, T.S. (1989) “Gas-core Technology”, Aerospace America, June, p.25.

    Google Scholar 

  • Meyers, R.(Ed.) (2006) Encyclopedia on Physical Sciences and Technology, 3rd ed., Vol. 15, Elsevier, Amsterdam, pp.555–575.

    Google Scholar 

  • Morring, F.(2008) “NASA Raises Ares V Lift”, Aviation Week Aerospace Daily & Defense Report, June 28, 2008. Available at http://www.aviationweek.com/aw/generic/story_ channel.jsp?channel=space&id=news/Lift062508.xml

    Google Scholar 

  • Mowery, A.L., and Black, D.L. (1999) “Space propulsion Annular Compact Engine (SPACE) A NERVA Technology Compact Nuclear Rocket”, AIAA Paper 99-2548, presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Meeting, June 20–24, 1999, Los Angeles.

    Google Scholar 

  • Mukhin, K.N. (1987) Experimental Nuclear Physics, Vol. I: Physics of Atomic Nucleus, Mir Publishers, Moscow, Chapter 1, p. 50; and Section 2.3.2, pp. 138 et seq.

    Google Scholar 

  • Musser, G., and Alpert, S. (2000) “How to go to Mars”, Scientific American, March, pp.29–30.See also NASA-JSC (2000).

    Google Scholar 

  • Myers, W.D., and Swiatecki, W.J. (1966) “Nuclear Masses and Deformations”, Nuclear Physics, Vol.81, pp. 1–60.

    Google Scholar 

  • Nagata, H., Miyoshi, M., Kotani, Y., Yamamoto, N., Kajimura, Y., and Nakashima, H. (2008) “Proposal of Nuclear Electric Propulsion System: Twin Star”, paper ISTS-b-08, presented at the Int. Symp. on Space Technology and Science (ISTS), Hamamatsu, Japan, June 1–8.

    Google Scholar 

  • NASA (1990) “NASA/DOD/DOE Nuclear Thermal Propulsion Workshop Notebook”, NASA-Lewis RC [now:-Glenn RC], Cleveland, OH.

    Google Scholar 

  • NASA-JSC (2000) VASIMR (ASPL) http://spaceflight.nasa.gov/mars/technology/propulsion/ aspl/vasimr.html

    Google Scholar 

  • NASA (2005a) NEO site www.neo.jpl.nasa.gov/ca/

    Google Scholar 

  • NASA (2005b) www.nasa.gov/vision/space/travelinginspace/25aug_plasticspaceships.html

    Google Scholar 

  • NASA (2005c) www.radiationshielding.nasa.gov

    Google Scholar 

  • Nature (2005) Vol.434, 21 April 2005, p.948.

    Google Scholar 

  • Negrotti, A. (2008) “VASIMR Prefeasibility Analysis”, in: Advanced Propulsion Systems and Technology: Today to 2020, edited by C. Bruno and A. Accettura, Progress in Astronautics and Aeronautics Vol.223, AIAA, Reston, VA, Ch.13.

    Google Scholar 

  • Ohira, K.(2004) “Development of Density and Mass Flowrate Measurement Technologies for Slush Hydrogen”, Cryogenics, Vol.44, No.1, pp.59–68.

    Google Scholar 

  • Oleson, S.R., (2004) “Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project”, AIAA Paper 2004-3453, July, American Institute of Aeronautics and Astronautics, Washington, D.C.

    Google Scholar 

  • Oleson, S., and Katz, I. (2003) “Electric Propulsion for Project Prometheus”, Paper AIAA 2003-5279, presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 20–23 July 2003, Huntsville, AL.

    Google Scholar 

  • Ortiz, L.(1993) “A Cost Analysis for a Nuclear Space Tug”, Adv. Astron. Sci., Vol.82, pp.1361–1374.

    Google Scholar 

  • Paniagua, J., Maise, G., and Powell, J. (2008) “Converting the ISS to an Earth-Moon Transport System Using Nuclear Thermal Propulsion”, in Proceedings of STAIF-2008, AIP Conf.Proc. 969, American Institute of Physics, Melville, NY. Available through mailto:orders-ny@springer.com

    Google Scholar 

  • Parker, E.N. (2006) “Shielding Space Travelers”, Scientific American, Vol.294, No.9, March, pp.22–29.

    Google Scholar 

  • Plaga, R.(2008) “Rays from the Dark”, Nature, Vol.453, No.7191, May 1, 2008, pp.48–49.

    Google Scholar 

  • Ponomarev-Stepnoy, N.N., Talyzin, V.M., Pavshuk, V.A., Putko, V.Ya., Konovalov, V.A., Raskach, F.L., Ulasevich, V.K., Smetannukov, V.P., Kolganov, V.D., Fedik, I.I., et al. (1999) “Rabotyi po Otiechiestvennogo ARD”, Atomic Energy, Vol.86, No.4, 296–302 [in Russian]. In this paper there is a picture of the “three Ks” (Korolev, Kurchatov and Keldysh) together.

    Google Scholar 

  • Powell, J., Maise, G., Ludewig, H., and Todosow, M. (1997) “High-Performance Ultra-light Nuclear Rockets for Near-Earth Objects Interactions Missions”, Ann. New York Academy of Science, Vol.822, Part 1, May, pp. 447–467.

    Article  Google Scholar 

  • Powell, J. (1999) “Compact Nuclear Rockets”, in Scientific American, February, p.72.

    Google Scholar 

  • Powell, J., Paniagua, J., Ludewig, H., Maise, G., and Todosow, M. (1998) “MITEE: A New Nuclear Engine Concept for Ultra Fast, Lightweight Solar System Exploration Missions”, in Space Technology and Applications International Forum—1998, edited by Mohamed S. El-Genk, Publication CP-420, The American Institute of Physics, New York, p.1131.

    Google Scholar 

  • Powell, J., Maise, G., Paniagua, J., Ludewig, H., and Todosow, M. (1999) “The MITEE Family of Compact, Ultra Lightweight Nuclear Thermal Propulsion Engines for Planetary Exploration Missions”, Paper IAF-99-S.6.03 presented at the 50th International Astronautical Congress, 4–8 October 1999, Amsterdam.

    Google Scholar 

  • Powell, J., Maise, G., and Paniagua, J. (2004a) “Is NTP the key to exploring space?”, Aerospace America, Vol.42, No.1, January, pp.36–42.

    Google Scholar 

  • Powell, J.R., Maise, G., and Paniagua, J. (2004b) “MITEE and SUSEE: Compact Ultra Lightweight Nuclear Power Systems for Robotic and Human Space Exploration Missions”, Paper IAC-04-IAA-R.4/S.7-04 presented at the 55th International Astronautical Congress, October 2–8, 2004, Vancouver, Canada.

    Google Scholar 

  • Pradas-Poveda, I. (2008) Personal communication. See also http://www.nikiet.ru/rus/conf/conf-archive.html

    Google Scholar 

  • Prelas, A. (1998) Personal communication.

    Google Scholar 

  • Prockter, L. (2004) “The Jupiter Icy Moons Orbiter: An Opportunity for Unprecedented Exploration of the Galilean Satellites”, paper IAC-04-IAA.3.6.4.02, presented at the 54th Int. Astronautical Conference (IAC), October 4–8, Vancouver, Canada.

    Google Scholar 

  • Project 242 WG (1999) (Proprietary) Patent Document prepared by C.Bruno, ASI-Project 242 Working Group, Italian Space Agency (ASI), Rome.

    Google Scholar 

  • Rachuk, V.S., Belogurov, A.I., Grigorenko, L.N. and Mamontov, Yu.I. (1996) “Russian Investigations in the Area of Nuclear Rocket Engines (NRE) Research International Programs”, paper presented at the 5th International Symposium on Propulsion for Space Transportation, 22–24 May 1996, Paris.

    Google Scholar 

  • Randolph, T.M., and Polk Jr., J.E. (2004) “An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity”, AIAA paper 2004-3450, presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 11–14 July 2004, Fort Lauderdale, FL.

    Google Scholar 

  • Reichardt, T. (2004) “Reviewers Caution NASA over Plans for Nuclear-powered Craft”, Nature, Vol.431, p.113.

    Article  Google Scholar 

  • Reichardt, T. (2005) “NASA Urged to Lay Plans for Mission to Europa”, Nature, Vol.433, p.342.

    Article  Google Scholar 

  • Ronen, Y., Aboudy, M., and Regev, D. (2000) “A Nuclear Engine with 242mAm as a Nuclear Fuel, Ann. Nucl. Energy, Vol.27, p.85.

    Article  Google Scholar 

  • Rose, B. (2008) Military Space Technology, Ian Allen, Horsham, UK, Ch.4.

    Google Scholar 

  • Sackheim, R., Van Dyke, M., Houts, M, Poston, D., Lipinski, R., Polk, J., and Frisbee, R. (2000) “In-Space Nuclear Power as an Enabling Technology for Deep Space Exploration”, AIAA Paper 2000-3881, presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Meeting, 16–19 July 2000, Huntsville, AL.

    Google Scholar 

  • Schmidt, G. (1999) “Nuclear and Future Flight Propulsion”, Aerospace America, December 1999, p.66.

    Google Scholar 

  • Schmidt, G.R., Bonometti, J.A. and Irvine, C.A. (2002) “Project Orion and Future Prospects for Nuclear Pulsed Propulsion”, J. Propulsion and Power, Vol.18, No.3, May–June 2002, 497–504.

    Article  Google Scholar 

  • Schock, A., Noravian, H., Or, C., and Kumar, V. (2002) “Design, Analysis and Fabrication Procedure of AMTEC Cell, Test Assembly, and Radioisotope Power System for Outer-planet Missions, Acta Astronautica, Vol.50, No.8, pp.471–510.

    Article  Google Scholar 

  • Schweickart, R.L. (Ed.) (2008) “Asteroid Threats: A Call for Global Response”, see www.space-explorers.org/committees/NEO/docs/ATACGR.pdf. September 25, 2008.

    Google Scholar 

  • Scina, J.E., Aulisio, M., Gerber, S.S., Hewitt, F., Miller, L., and Elbuluk, M. (2004) “Power Processing for a Conceptual Prometheus Electric Propulsion System”, AIAA paper 2004-3452, presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 11–14 July 2004, Fort Lauderdale, FL.

    Google Scholar 

  • Shepherd, L.R., and Cleaver, A.V. (1948) “The Atomic Rocket-2 and-3”, Journal of the British Interplanetary Society, Vol.7, No.6, pp.237–240; and Vol.8, No.1, p.30, January 1949.Cited also in [Bussard and DeLauer, 1958, p.319].

    Google Scholar 

  • Sietzen, F. (2008) “Reinventing Heavy Lift”, Aerospace America, Vol.46, No.8, August, pp.38–42.

    Google Scholar 

  • Smith, B. and Anghaie, S. (2004) “Gas Core Reactor with Magnetohydrodynamic Power System and Cascading Power Cycle”, Nuclear Tchenology, Vol.145, No.3, 311–318.

    Google Scholar 

  • Space News (2003) “NASA Nuclear Propulsion Targeted for Big Increase”, January 20, 2003, p.4.

    Google Scholar 

  • STAIF (Space Technology Applications International Forum) (2008) Papers from Sessions CT-01 and CT-02 contain information about nuclear surface power for lunar outposts. In: Proc. STAIF 2008, American Institute of Physics (AIP), Conference Proceedings 969, Melville, NY. Available through mailto:orders-ny@springer.com

    Google Scholar 

  • Sutton, G.P. (1992) Rocket Propulsion Elements, 6th edn, Wiley Interscience, New York, Chapter 19.

    Google Scholar 

  • Takao, Y., Noutsuka, T., Mori, Y., Uemura, K., Sou, H., and Nakashima, H. (2000) “Electron Cyclotron Resonance (ECR) Plasma Thruster Research”, Paper ISTS 2000-b-32, presented at the 22nd International Symposium on Space Technology and Science, Morioka, Japan, May 28–June 4, 2000.

    Google Scholar 

  • Tauber, M.E., Bowles, J.V., and Yang, L. (1990) “Use of Atmospheric Braking during Mars Missions”, Journal of Spacecraft and Rockets, Vol.27, No.3, p.514.

    Article  Google Scholar 

  • Thode, L.E., Cline, M.C., and Howe, S.D. (1997) “Vortex Formation and Stability in a Scaled Gas Core Nuclear Rocket Configuration”, AIAA paper 97-2955, presented at the 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle, 11–15 July 1997.

    Google Scholar 

  • Tocheny, L. (2000) “Radiation Safety of Mars Expedition”, Mars Mission, Vol.12, Section 4, ISTC Project 1172, International Science and Technology Center, Moscow.

    Google Scholar 

  • Tripathi, R.K., Wilson, J.W., and Joshi, R.P. (2006) “Risk Assessment and Shielding Design for Long-term Exposure to Ionizing Space Radiation”, SAE 2006, Transactions Journal of Aerospace, Vol.115-1, pp.254–262.

    Google Scholar 

  • Turner, M.J.L. (2005) Rocket and Space Propulsion, Springer-Praxis, Chichester, UK, Ch.7.

    Google Scholar 

  • University of Pisa (2005) NEO trajectory information site, www.newton.dm.unipi.it/~neodys/astinfo/orbfit/

    Google Scholar 

  • Vacca, K, and Johnson, A. (2004) “Feasibility of a Nuclear Single Stage to Orbit Reusable Vehicle”, Paper IAC-04-IAF-R.4/S.7-06, presented at the 55th International Astronautical Congress, Vancouver, Canada, October 4–8, 2004.

    Google Scholar 

  • Walker, P., and Dracoulis, G. (1999) “Energy Traps in Atomic Nuclei”, Nature, Vol.399, pp.35–40.

    Article  Google Scholar 

  • Westinghouse (1972) “Technical Summary Report of the NERVA Program”, Vols I–VI, Westinghouse Astronuclear Laboratory Publication WANL TNR-230, Pittsburgh, PA.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

(2009). Exploration of our Solar System. In: Future Spacecraft Propulsion Systems. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88814-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88814-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88813-0

  • Online ISBN: 978-3-540-88814-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics