Contextual Ranking of Database Querying Results: A Statistical Approach

  • Xiang Li
  • Ling Feng
  • Lizhu Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5279)


There has been an increasing interest in context-awareness and preferences for database querying. Ranking of database query results under different contexts is an effective approach to provide the most relevant information to the right users. By applying the regression models developed in the statistics field, we present a quantitative way to measure the impact of context upon database query results by means of contextual ranking functions with context attributes and their influential database attributes as parameters. To make the approach computationally efficient, we furthermore propose to reduce the dimensionality of context space, which can not only increase computational efficiency but also help ones identify informative association patterns among context attributes and database attributes. Our experimental study on both synthetic and real data verifies the efficiency and effectiveness of our methods.


Synthetic Data Ranking Function Multivariate Adaptive Regression Spline Context Attribute Query Answer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Rantzau, R., Terzi, E.: Context-sensitive Ranking. In: ACM SIGMOD 2006, Chicago, Illinois, USA (2006)Google Scholar
  2. 2.
    Agrawal, R., Wimmers, E.: A Framework for Expressing and Combining Preferences. In: ACM SIGMOD 2000, Dallas, Texas, USA (2000)Google Scholar
  3. 3.
    Bellman, R.: Adaptive Control Processes: A Tour Guide. Princeton University Press, Princeton (1961)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bunningen, A., Feng, L., Apers, P.: A context-aware query preference model for Ambient Intelligence. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Bunningen, A., Fokkinga, M., Apers, P., Feng, L.: Ranking Query Results using Context-Aware Preferences. In: First Intl. Workshop on Ranking in Databases (In Conjunction with ICDE 2007), Istanbul, Turkey, April 16 (2007)Google Scholar
  6. 6.
    Cai, D., He, X., Han, J.: Spectral Regression: A Unified Subspace Learning Framework for Content-Based Image Retrieval. In: ACM Multimedia 2007, Augsburg, Germany (September 2007)Google Scholar
  7. 7.
    Chen, K., Zhang, Y., Zheng, Z., Zha, H., Sun, G.: Adapting Ranking Functions to User Preference. In: Second Intl. Workshop on Ranking in Databases(DBRank 2008), Cancun, Mexico (2008)Google Scholar
  8. 8.
    Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4), 427–466 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cunningham, P.: Dimension Reduction. Technical Report UCD-CSI-2007-7 University College Dublin (2007)Google Scholar
  10. 10.
    Feng, L., Apers, P., Jonker, W.: Towards Context-Aware Data Management for Ambient Intelligence. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Friedman, J.: Multivariate Adaptive Regression Splines. The Annual of Statistics 19(1), 1–67 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Heidelberg (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Higgins, J.: Introduction to Modern Nonparametric Statistics. Duxbury Press (2003)Google Scholar
  14. 14.
    Joachims, T.: Optimizing Search Engines using Clickthrough Data. In: SIGKDD 2002, Edmonton, Alberta, Canada (2002)Google Scholar
  15. 15.
    Kießling, W.: Foundations of Preferences in Database Systems. In: VLDB, pp. 311-322, Hong Kong, China (2002)Google Scholar
  16. 16.
    Koutrika, G., Ioannidis, Y.: Personalized Queries under a Generalized Preference Model. In: Proc. of 21st Intl. Conf. On Data Engineering (ICDE), Tokyo, Japan, April 5-8 2005, pp. 841–852 (2005)Google Scholar
  17. 17.
    Lattin, J., Carroll, J., Green, P.: Analyzing Multivariate Data. Duxbury (2003)Google Scholar
  18. 18.
    Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  19. 19.
    McCullagh, P., Nelder, J.: Generalized linear Models, 2nd edn. Chapman & Hall/CRC, London (1989)CrossRefzbMATHGoogle Scholar
  20. 20.
    Myers, R., Montgomery, D., Vining, G.: Generalized Linear Models with Applications in Engineering and the Sciences. John Wiley & Sons, Chichester (2002)zbMATHGoogle Scholar
  21. 21.
    Stefanidis, K., Pitoura, E.: Fast Contextual Preferences Scoring of Database. In: EDBT 2008, Nantes, France (2008)Google Scholar
  22. 22.
    Stefanidis, K., Pitoura, E., Vassiliadis, P.: On Supporting Context-Aware Preferences in Relational Database Systems. In: First Intl Workshop on Managing Context Information in Mobile and Pervasive Environments(MCMP 2005), Ayia Napa, Cyprus (2005)Google Scholar
  23. 23.
    Stefanidis, K., Pitoura, E., Vassiliadis, P.: Adding Context to Preferences. In: ICDE, Istanbul, Turkey (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Xiang Li
    • 1
  • Ling Feng
    • 1
  • Lizhu Zhou
    • 1
  1. 1.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations