Finite Difference Methods for Parabolic Problems

Part of the Texts in Applied Mathematics book series (TAM, volume 45)


In this chapter we give an introduction to the numerical solution of parabolic equations by finite differences, and consider the application of such methods to the homogeneous heat equation in one space dimension.We first discuss, in Sect. 9.1, the pure initial value problem, with data given on the unrestricted real axis, and then in Sect. 9.2 the mixed initial-boundary value problem on a finite interval in space, under Dirichlet boundary conditions. We discuss stability and error bounds for various choices of finite difference approximations, in maximum-norm by maximum principle type arguments and in L2-norm by Fourier analysis. For the unrestricted problem we consider explicit schemes, and on a finite interval also implicit ones, such as the Crank-Nicolson scheme.


Truncation Error Euler Method Parabolic Problem Solution Operator Discrete Maximum Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Personalised recommendations