Parabolic Equations

Part of the Texts in Applied Mathematics book series (TAM, volume 45)


In this chapter we study both the pure initial value problem and the mixed initial-boundary value problem for the model heat equation, using Fourier techniques as well as energy arguments. In Sect. 8.1 we analyze the solution of the pure initial value problem for the homogeneous heat equation by means of a representation in terms of the Gauss kernel, and use it to investigate properties of the solution. In the remainder of the chapter we consider the initial-boundary value problem in a bounded spatial domain. In Sect. 8.2 we solve the homogeneous equation by means of eigenfunction expansions, and apply Duhamel’s principle to find a solution of the inhomogeneous equation. In Sect. 8.3 we introduce the variational formulation of the problem and give examples of the use of energy arguments, and in Sect. 8.4 we show and apply the maximum principle.


Maximum Principle Parabolic Equation Variational Formulation Heat Equation Parabolic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Personalised recommendations