In this chapter we describe some of the recent progress in lattice-based cryptography. Lattice-based cryptographic constructions hold a great promise for post-quantum cryptography, as they enjoy very strong security proofs based on worst-case hardness, relatively efficient implementations, as well as great simplicity. In addition, lattice-based cryptography is believed to be secure against quantum computers. Our focus here will be mainly on the practical aspects of lattice-based cryptography and less on the methods used to establish their security. For other surveys on the topic of lattice-based cryptography, see, e.g., [36, 52, 60, 71] and the lecture notes [51, 67]. The survey by Nguyen and Stern [60] also describes some applications of lattices in cryptanalysis, an important topic that we do not discuss here. Another useful resource is the book by Micciancio and Goldwasser [49], which also contains a wealth of information on the computational complexity aspects of lattice problems.
Keywords
- Hash Function
- Signature Scheme
- Lattice Problem
- Quantum Algorithm
- Random Oracle Model
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Adleman, L.M.: Factoring and lattice reduction (1995). Unpublished manuscript.
Aharonov, D. and Regev, O.: Lattice problems in NP intersect coNP. Journal of the ACM, 52(5):749–765 (2005). Preliminary version in FOCS 2004.
Ajtai, M.: The shortest vector problem in l 2 is NP-hard for randomized reductions (extended abstract) 10–19. In Proc. 30th ACM Symp. on Theory of Computing (STOC), pages 10–19. ACM (1998).
Ajtai, M.: Representing hard lattices with O(nlogn) bits. In Proc. 37th Annual ACM Symp. on Theory of Computing (STOC) (2005).
Ajtai, M. and Dwork, C: A public-key cryptosystem with worst-case/average-case equivalence. In Proc. 29th Annual ACM Symp. on Theory of Computing (STOC), pages 284–293 (1997).
Ajtai, M., Kumar, R., and Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In Proc. 33rd ACM Symp. on Theory of Computing, pages 601–610 (2001).
Ajtai, M.: Generating hard instances of lattice problems. In Complexity of computations and proofs, volume 13 of Quad. Mat., pages 1–32. Dept. Math., Seconda Univ. Napoli, Caserta (2004). Preliminary version in STOC 1996.
Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Combinatorica, 6:1–13 (1986).
Blum, A., Kalai, A., and Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. Journal of the ACM, 50(4):506–519 (2003). Preliminary version in STOC'00.
Buchmann, J., Lindner, R., and Rückert, M.: Creating a lattice challenge (2008). Manuscript.
Cai, J.Y. and Nerurkar, A.: An improved worst-case to average-case connection for lattice problems. In Proc. 38th IEEE Symp. on Found. of Comp. Science, pages 468–477 (1997).
Cai, J.Y. and Nerurkar, A.: Approximating the SVP to within a factor (1 + 1/dime) is NP-hard under randomized reductions. J. Comput. System Sci., 59(2):221–239 (1999). ISSN 0022-0000.
Coppersmith, D. and Shamir, A.: Lattice attacks on NTRU. In Proc. of Euro-crypt '97, volume 1233 of LNCS. IACR, Springer (1997).
Dinur, I., Kindler, G., Raz, R., and Safra, S.: Approximating CVP to within almost-polynomial factors is NP-hard. Combinatorica, 23(2):205–243 (2003).
Gama, N. and Nguyen, P.Q.: Finding short lattice vectors within Mordell's inequality. In Proc. 40th ACM Symp. on Theory of Computing (STOC), pages 207–216 (2008).
Gama, N. and Nguyen, P.Q.: Predicting lattice reduction. In Advances in Cryptology — Proc. Eurocrypt '08, Lecture Notes in Computer Science. Springer (2008).
Gentry, C. and Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In Proc. of Eurocrypt ɗ02, volume 2332 of LNCS. Springer-Verlag (2002).
Gentry, C, Peikert, C, and Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In Proc. 40th ACM Symp. on Theory of Computing (STOC), pages 197–206 (2008).
Goldreich, O., Goldwasser, S., and Halevi, S.: Public-key cryptosystems from lattice reduction problems. In Advances in cryptology, volume 1294 of Lecture Notes in Comput. Sci., pages 112–131. Springer (1997).
Goldreich, O. and Goldwasser, S.: On the limits of nonapproximability of lattice problems. Journal of Computer and System Sciences, 60(3):540–563 (2000). Preliminary version in STOC 1998.
Goldreich, O., Goldwasser, S., and Halevi, S.: Collision-free hashing from lattice problems. Technical Report TR96–056, Electronic Colloquium on Computational Complexity (ECCC) (1996).
Goldreich, O., Goldwasser, S., and Halevi, S.: Eliminating decryption errors in the Ajtai-Dwork cryptosystem. In Advances in cryptology, volume 1294 of Lecture Notes in Comput. Sci., pages 105–111. Springer (1997).
Goldwasser, S. and Micali, S.: Probabilistic encryption. Journal of Computer and System Sience, 28(2):270–299 (1984). Preliminary version in Proc. of STOC 1982.
Goldwasser, S., Micali, S., and Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. on Computing, 17(2):281–308 (1987).
Haviv, I. and Regev, O.: Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In Proc. 39th ACM Symp. on Theory of Computing (STOC), pages 469–477 (2007).
Hoffstein, J., Graham, N.A.H., Pipher, J., Silverman, J.H., and Whyte, W.: NTRUSIGN: Digital signatures using the NTRU lattice. In Proc. of CT-RSA, volume 2612 of Lecture Notes in Comput. Sci., pages 122–140. Springer-Verlag (2003).
Hoffstein, J., Graham, N.A.H., Pipher, J., Silverman, J.H., and Whyte, W.: Performances improvements and a baseline parameter generation algorithm for NTRUsign. In Proc. of Workshop on Mathematical Problems and Techniques in Cryptology, pages 99–126. CRM (2005).
Hoffstein, J., Howgrave-Graham, N., Pipher, J., and Silverman, J.H.: Hybrid lattice reduction and meet in the middle resistant parameter selection for NTRU-Encrypt. Submission/contribution to ieee p1363.1, NTRU Cryptosystems, Inc., URL http://grouper.ieee.org/groups/1363/lattPK/submissions.html#2007-02 (2007).
Hoffstein, J., Pipher, J., and Silverman, J.H.: NTRU: a ring based public key cryptosystem. In Proceedings of ANTS-III, volume 1423 of LNCS, pages 267– 288. Springer (1998).
Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In Advances in cryptology (CRYPTO), pages 150–169 (2007).
Kannan, R.: Improved algorithms for integer programming and related lattice problems. In Proc. 15th ACM Symp. on Theory of Computing (STOC), pages 193–206. ACM (1983).
Kawachi, A., Tanaka, K., and Xagawa, K.: Multi-bit cryptosystems based on lattice problems. In Public Key Cryptography — PKC 2007, volume 4450 of Lecture Notes in Comput. Sci., pages 315–329. Springer, Berlin (2007).
Khot, S.: Hardness of approximating the shortest vector problem in lattices. In Proc. 45th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pages 126–135 (2004).
Khot, S.: Inapproximability results for computational problems on lattices (2007). Survey paper prepared for the LLL+25 conference. To appear.
Klein, P.: Finding the closest lattice vector when it's unusually close. In Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 937–941 (2000).
Kumar, R. and Sivakumar, D.: Complexity of SVP — a reader's digest. SIGACT News, 32(3):40–52 (2001). doi:http://doi.acm.org/10.1145/582475.582484.
Lagarias, J.C., Lenstra, Jr., H.W., and Schnorr, C.P.: Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica, 10(4):333–348 (1990).
Lenstra, A.K. and Lenstra, Jr., H.W., editors: The development of the number field sieve, volume 1554 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1993). ISBN 3-540-57013-6.
Lenstra, A.K., Lenstra, Jr., H.W., and Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann., 261(4):515–534 (1982).
Lindner, R. and Rückert, M.: The lattice challence (2008). Available at http://www.latticechallenge.org/.
Ludwig, C.: A faster lattice reduction method using quantum search. In ISAAC, pages 199–208 (2003).
Lyubashevsky, V. and Micciancio, D.: Generalized compact knapsacks are collision resistant. In 33rd International Colloquium on Automata, Languages and Programming (ICALP) (2006).
Lyubashevsky, V. and Micciancio, D.: Asymptotically efficient lattice-based digital signatures. In Fifth Theory of Cryptography Conference (TCC), volume 4948 of Lecture Notes in Computer Science. Springer (2008).
Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In PKC'08, number 4939 in LNCS, pages 162–179 (2008).
Lyubashevsky, V., Micciancio, D., Peikert, C., and Rosen, A.: SWIFFT: a modest proposal for FFT hashing. In FSE 2008 (2008).
McEliece, R.: A public-key cryptosystem based on algebraic number theory. Technical report, Jet Propulsion Laboratory (1978). DSN Progress Report 42-44.
Micciancio, D.: The shortest vector problem is NP-hard to approximate to within some constant. SIAM J. on Computing, 30(6):2008–2035 (2001). Preliminary version in FOCS 1998.
Micciancio, D.: Improved cryptographic hash functions with worst-case/average-case connection. In Proc. 34th ACM Symp. on Theory of Computing (STOC), pages 609–618 (2002).
Micciancio, D. and Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective, volume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, Massachusetts (2002).
Micciancio, D.: Improving lattice based cryptosystems using the hermite normal form. In J. Silverman, editor, Cryptography and Lattices Conference — CaLC 2001, volume 2146 of Lecture Notes in Computer Science, pages 126–145. Springer-Verlag, Providence, Rhode Island (2001).
Micciancio, D.: Lattices in cryptography and cryptanalysis (2002). Lecture notes of a course given in UC San Diego.
Micciancio, D.: Cryptographic functions from worst-case complexity assumptions (2007). Survey paper prepared for the LLL+25 conference. To appear.
Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient oneway functions from worst-case complexity assumptions. Computational Complexity, 16(4):365–411 (2007). Preliminary versions in FOCS 2002 and ECCC TR04-095.
Micciancio, D. and Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In Proc. 45th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pages 372–381 (2004).
Micciancio, D. and Vadhan, S.: Statistical zero-knowledge proofs with efficient provers: lattice problems and more. In Advances in cryptology (CRYPTO), volume 2729 of Lecture Notes in Computer Science, pages 282–298. Springer-Verlag (2003).
Naor, M. and Yung, M.: Universal one-way hash functions and their cryptographic applications. In Proc. 21st ACM Symp. on Theory of Computing (STOC), pages 33–43 (1989).
Nguyen, P.Q. and Vidick, T.: Sieve algorithms for the shortest vector problem are practical. J. of Mathematical Cryptology (2008). To appear.
Nguyen, P. and Stern, J.: Cryptanalysis of the Ajtai-Dwork cryptosystem. In Advances in cryptology (CRYPTO), volume 1462 of Lecture Notes in Comput. Sci., pages 223–242. Springer (1998).
Nguyen, P.Q. and Regev, O.: Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. In The 25th International Cryptology Conference (Eu-rocrypt), pages 271–288 (2006).
Nguyen, P.Q. and Stern, J.: The two faces of lattices in cryptology. In J.H. Silverman, editor, Cryptography and Lattices, International Conference (CaLC 2001), number 2146 in Lecture Notes in Computer Science, pages 146–180 (2001).
Peikert, C. and Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In 3rd Theory of Cryptography Conference (TCC), pages 145–166 (2006).
Peikert, C. and Rosen, A.: Lattices that admit logarithmic worst-case to average-case connection factors. In Proc. 39th ACM Symp. on Theory of Computing (STOC), pages 478–487 (2007).
Peikert, C. and Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs for lattice problems. In Advances in Cryptology (CRYPTO), LNCS. Springer (2008).
Peikert, C, Vaikuntanathan, V., and Waters, B.: A framework for efficient and composable oblivious transfer. In Advances in Cryptology (CRYPTO), LNCS. Springer (2008).
Peikert, C. and Waters, B.: Lossy trapdoor functions and their applications. In Proc. 40th ACM Symp. on Theory of Computing (STOC), pages 187–196 (2008).
Peikert, C.J.: Limits on the hardness of lattice problems in l p norms. Computational Complexity (2008). To appear. Preliminary version in Proc. of CCC 2007.
Regev, O.: Lattices in computer science (2004). Lecture notes of a course given in Tel Aviv University.
Regev, O.: New lattice-based cryptographic constructions. Journal of the ACM, 51(6):899–942 (2004). Preliminary version in STOC'03.
Regev, O.: Quantum computation and lattice problems. SIAM J. on Computing, 33(3):738–760 (2004). Preliminary version in FOCS'02.
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In Proc. 37th ACM Symp. on Theory of Computing (STOC), pages 84–93 (2005).
Regev, O.: Lattice-based cryptography. In Advances in cryptology (CRYPTO), pages 131–141 (2006).
Regev, O.: On the complexity of lattice problems with polynomial approximation factors (2007). Survey paper prepared for the LLL+25 conference. To appear.
Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science, 53(2–3):201–224 (1987).
Schnorr, C.P.: Factoring integers and computing discrete logarithms via Dio-phantine approximation. In J.Y. Cai, editor, Advances in computational complexity, volume 13 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 171–182. AMS (1993). Preliminary version in Euro-crypt '91.
Shoup, V.: NTL: A library for doing number theory. Available at http://www.shoup.net/ntl/.
Szydlo, M.: Hypercubic lattice reduction and analysis of GGH and NTRU signatures. In Proc. of Eurocrypt '03, volume 2656 of LNCS. Springer-Verlag (2003).
van Emde Boas, P.: Another NP-complete problem and the complexity of computing short vectors in a lattice. Technical report, University of Amsterdam, Department of Mathematics, Netherlands (1981). Technical Report 8104.
Wagner, D.: A generalized birthday problem. In Advances in cryptology (CRYPTO), volume 2442 of LNCS, pages 288–303. Springer (2002).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Micciancio, D., Regev, O. (2009). Lattice-based Cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds) Post-Quantum Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88702-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-88702-7_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88701-0
Online ISBN: 978-3-540-88702-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)