Compressive Structured Light for Recovering Inhomogeneous Participating Media

  • Jinwei Gu
  • Shree Nayar
  • Eitan Grinspun
  • Peter Belhumeur
  • Ravi Ramamoorthi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5305)

Abstract

We propose a new method named compressive structured light for recovering inhomogeneous participating media. Whereas conventional structured light methods emit coded light patterns onto the surface of an opaque object to establish correspondence for triangulation, compressive structured light projects patterns into a volume of participating medium to produce images which are integral measurements of the volume density along the line of sight. For a typical participating medium encountered in the real world, the integral nature of the acquired images enables the use of compressive sensing techniques that can recover the entire volume density from only a few measurements. This makes the acquisition process more efficient and enables reconstruction of dynamic volumetric phenomena. Moreover, our method requires the projection of multiplexed coded illumination, which has the added advantage of increasing the signal-to-noise ratio of the acquisition. Finally, we propose an iterative algorithm to correct for the attenuation of the participating medium during the reconstruction process. We show the effectiveness of our method with simulations as well as experiments on the volumetric recovery of multiple translucent layers, 3D point clouds etched in glass, and the dynamic process of milk drops dissolving in water.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

978-3-540-88693-8_62_MOESM1_ESM.mov (24.5 mb)
Supplementary material(25,094 KB)

References

  1. 1.
    Salvi, J., Pages, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recognition 37, 827–849 (2004)MATHCrossRefGoogle Scholar
  2. 2.
    Narasimhan, S., Nayar, S., Sun, B., Koppal, S.: Structured light in scattering media. In: ICCV 2005, pp. 420–427 (2005)Google Scholar
  3. 3.
    Hawkins, T., Einarsson, P., Debevec, P.: Acquisition of time-varying participating media. In: SIGGRAPH 2005, pp. 812–815 (2005)Google Scholar
  4. 4.
    Deusch, S., Dracos, T.: Time resolved 3D passive scalar concentration-field imaging by induced fluorescence (LIF) in moving liquids. Measurement Science and Technology 12(2), 188–200 (2001)CrossRefGoogle Scholar
  5. 5.
    Fuchs, C., Chen, T., Goesele, M., Theisel, H., Seidel, H.: Density estimation for dynamic volumes. Computers and Graphics 31(2), 205–211 (2007)CrossRefGoogle Scholar
  6. 6.
    Candes, E.J., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Problems 23(3), 969–985 (2007)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Donoho, D.: Compressed sensing. IEEE Trans. on Information Theory 52(4), 1289–1306 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Schechner, Y.Y., Nayar, S.K., Belhumeur, P.N.: A theory of multiplexed illumination. In: ICCV 2003, pp. 808–815 (2003)Google Scholar
  9. 9.
    Willett, R., Gehm, M., Brady, D.: Multiscale reconstruction for computational spectral imaging. In: Computational Imaging V at SPIE Electronic Imaging (2007)Google Scholar
  10. 10.
    Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: The application of compressed sensing for rapid MRI imaging. Magnetic Resonance in Medicine 58(6), 1182–1195 (2007)CrossRefGoogle Scholar
  11. 11.
    Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation (2008)Google Scholar
  12. 12.
    Hasinoff, S., Kutulakos, K.: Photo-consistent reconstruction of semi-transparent scenes by density sheet decomposition. IEEE Trans. on PAMI 29(5), 870–885 (2007)Google Scholar
  13. 13.
    Ihrke, I., Magnor, M.: Image-based tomographic reconstruction of flames. In: SCA, pp. 361–375 (2004)Google Scholar
  14. 14.
    Ihrke, I., Magnor, M.: Adaptive grid optical tomography. Graphical Models 68(5), 484–495 (2006)CrossRefGoogle Scholar
  15. 15.
    Trifonov, B., Bradley, D., Heidrich, W.: Tomographic reconstruction of transparent objects. In: EGSR, pp. 51–60 (2006)Google Scholar
  16. 16.
    Ihrke, I., Kutulakos, K.N., Lensch, H.P.A., Magnor, M., Heidrich, W.: State of the art in transparent and specular object reconstruction. In: STAR Proc. of Eurographics (2008)Google Scholar
  17. 17.
    Candes, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics 59(8), 1207–1223 (2006)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ishimaru, A.: Wave Propagation and Scattering in Random Media. IEEE Press, New York (1978)Google Scholar
  19. 19.
    GLPK: The Gnu Linear Programming Kit, http://www.gnu.org/software/glpk
  20. 20.
    Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learing a sparse code for natural images. Nature 381, 607–608 (1996)CrossRefGoogle Scholar
  21. 21.
    Simoncelli, E.P.: Statistical models for images: compression restoration and synthesis. In: Proc. Asilomar Conference on Signals, Systems and Computers, pp. 673–678 (1997)Google Scholar
  22. 22.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation noise removal algorithm. Physica D 60, 259–268 (1992)MATHCrossRefGoogle Scholar
  23. 23.
    Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th edn. Pearson Eduction, Inc., London (2006)Google Scholar
  24. 24.
    Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. SIGGRAPH 2006, 935–944 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jinwei Gu
    • 1
  • Shree Nayar
    • 1
  • Eitan Grinspun
    • 1
  • Peter Belhumeur
    • 1
  • Ravi Ramamoorthi
    • 1
  1. 1.Columbia UniversityNew YorkUSA

Personalised recommendations