Skip to main content

Advertisement

SpringerLink
Go to cart
  • Log in
Book cover

European Conference on Computer Vision

ECCV 2008: Computer Vision – ECCV 2008 pp 83–97Cite as

  1. Home
  2. Computer Vision – ECCV 2008
  3. Conference paper
Learning Optical Flow

Learning Optical Flow

  • Deqing Sun4,
  • Stefan Roth5,
  • J. P. Lewis6 &
  • …
  • Michael J. Black4 
  • Conference paper
  • 8784 Accesses

  • 108 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 5304)

Abstract

Assumptions of brightness constancy and spatial smoothness underlie most optical flow estimation methods. In contrast to standard heuristic formulations, we learn a statistical model of both brightness constancy error and the spatial properties of optical flow using image sequences with associated ground truth flow fields. The result is a complete probabilistic model of optical flow. Specifically, the ground truth enables us to model how the assumption of brightness constancy is violated in naturalistic sequences, resulting in a probabilistic model of “brightness inconstancy”. We also generalize previous high-order constancy assumptions, such as gradient constancy, by modeling the constancy of responses to various linear filters in a high-order random field framework. These filters are free variables that can be learned from training data. Additionally we study the spatial structure of the optical flow and how motion boundaries are related to image intensity boundaries. Spatial smoothness is modeled using a Steerable Random Field, where spatial derivatives of the optical flow are steered by the image brightness structure. These models provide a statistical motivation for previous methods and enable the learning of all parameters from training data. All proposed models are quantitatively compared on the Middlebury flow dataset.

Keywords

  • Ground Truth
  • Optical Flow
  • Data Term
  • Spatial Term
  • Brightness Constancy

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Download conference paper PDF

References

  1. Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. CVIU 63, 75–104 (1996)

    Google Scholar 

  2. Roth, S., Black, M.J.: On the spatial statistics of optical flow. IJCV 74, 33–50 (2007)

    CrossRef  Google Scholar 

  3. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. In: ICCV (2007)

    Google Scholar 

  4. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE TPAMI 8, 565–593 (1986)

    CrossRef  Google Scholar 

  5. Roth, S., Black, M.J.: Steerable random fields. In: ICCV (2007)

    Google Scholar 

  6. Wainwright, M.J., Simoncelli, E.P.: Scale mixtures of Gaussians and the statistics of natural images. In: NIPS, pp. 855–861 (1999)

    Google Scholar 

  7. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  8. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 61, 211–231 (2005)

    CrossRef  Google Scholar 

  9. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 16, 185–203 (1981)

    CrossRef  Google Scholar 

  10. Fermüller, C., Shulman, D., Aloimonos, Y.: The statistics of optical flow. CVIU 82, 1–32 (2001)

    MATH  Google Scholar 

  11. Gennert, M.A., Negahdaripour, S.: Relaxing the brightness constancy assumption in computing optical flow. Technical report, Cambridge, MA, USA (1987)

    Google Scholar 

  12. Haussecker, H., Fleet, D.: Computing optical flow with physical models of brightness variation. IEEE TPAMI 23, 661–673 (2001)

    CrossRef  Google Scholar 

  13. Toth, D., Aach, T., Metzler, V.: Illumination-invariant change detection. In: 4th IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 3–7 (2000)

    Google Scholar 

  14. Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Engineer 29, 33–41 (1984)

    Google Scholar 

  15. Alvarez, L., Deriche, R., Papadopoulo, T., Sanchez, J.: Symmetrical dense optical flow estimation with occlusions detection. IJCV 75, 371–385 (2007)

    CrossRef  MATH  Google Scholar 

  16. Fleet, D.J., Black, M.J., Nestares, O.: Bayesian inference of visual motion boundaries. In: Exploring Artificial Intelligence in the New Millennium, pp. 139–174. Morgan Kaufmann Pub., San Francisco (2002)

    Google Scholar 

  17. Black, M.J.: Combining intensity and motion for incremental segmentation and tracking over long image sequences. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 485–493. Springer, Heidelberg (1992)

    CrossRef  Google Scholar 

  18. Simoncelli, E.P., Adelson, E.H., Heeger, D.J.: Probability distributions of optical flow. In: CVPR, pp. 310–315 (1991)

    Google Scholar 

  19. Black, M.J., Yacoob, Y., Jepson, A.D., Fleet, D.J.: Learning parameterized models of image motion. In: CVPR, pp. 561–567 (1997)

    Google Scholar 

  20. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. IJCV 40, 25–47 (2000)

    CrossRef  MATH  Google Scholar 

  21. Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: CVPR (2007)

    Google Scholar 

  22. Roth, S., Black, M.J.: Fields of experts: A framework for learning image priors. In: CVPR, vol. II, pp. 860–867 (2005)

    Google Scholar 

  23. Stewart, L., He, X., Zemel, R.: Learning flexible features for conditional random fields. IEEE TPAMI 30, 1145–1426 (2008)

    CrossRef  Google Scholar 

  24. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput 14, 1771–1800 (2002)

    CrossRef  MATH  Google Scholar 

  25. Blake, A., Zisserman, A.: Visual Reconstruction. The MIT Press, Cambridge, Massachusetts (1987)

    Google Scholar 

  26. Zhu, S., Wu, Y., Mumford, D.: Filters random fields and maximum entropy (FRAME): To a unified theory for texture modeling. IJCV 27, 107–126 (1998)

    CrossRef  Google Scholar 

  27. Lempitsky, V., Roth, S., Rother, C.: FusionFlow: Discrete-continuous optimization for optical flow estimation. In: CVPR (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, Brown University, Providence, RI, USA

    Deqing Sun & Michael J. Black

  2. Department of Computer Science, TU Darmstadt, Darmstadt, Germany

    Stefan Roth

  3. Weta Digital Ltd., New Zealand

    J. P. Lewis

Authors
  1. Deqing Sun
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Stefan Roth
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. J. P. Lewis
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Michael J. Black
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Computer Science Department, University of Illinois at Urbana Champaign, 3310 Siebel Hall, IL 61801, Urbana, USA

    David Forsyth

  2. Department of Computing, Oxford Brookes University, OX33 1HX, Wheatley, Oxford, UK

    Philip Torr

  3. Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, UK

    Andrew Zisserman

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, D., Roth, S., Lewis, J.P., Black, M.J. (2008). Learning Optical Flow. In: Forsyth, D., Torr, P., Zisserman, A. (eds) Computer Vision – ECCV 2008. ECCV 2008. Lecture Notes in Computer Science, vol 5304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88690-7_7

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-88690-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88689-1

  • Online ISBN: 978-3-540-88690-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 95.216.99.153

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.