Abstract
Successful multi-target tracking requires locating the targets and labeling their identities. This mission becomes significantly more challenging when many targets frequently interact with each other (present partial or complete occlusions). This paper presents an on-line supervised learning based method for tracking multiple interacting targets. When the targets do not interact with each other, multiple independent trackers are employed for training a classifier for each target. When the targets are in close proximity or present occlusions, the learned classifiers are used to assist in tracking. The tracking and learning supplement each other in the proposed method, which not only deals with tough problems encountered in multi-target tracking, but also ensures the entire process to be completely on-line. Various evaluations have demonstrated that this method performs better than previous methods when the interactions occur, and can maintain the correct tracking under various complex tracking situations, including crossovers, collisions and occlusions.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Avidan, S.: Ensemble tracking. IEEE Trans. PAMI 29, 261–271 (2007)
Le, L., Gregory, D.: A nonparametric treatment for location/segmentation based visual tracking. In: Proc. IEEE CVPR, pp. 261–268 (2007)
Bar-Shalom, Y., Fortmann, T.E.: Tracking and data association. Academic Press, New York (1998)
Okuma, K., Taleghani, A., Freitas, N.D., Little, J.J., Lowe, D.G.: A boosted particle filter: Multitarget detection and tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)
Vermaak, J., Doucet, A., Perez, P.: Maintaining multi-modality through mixture tracking. In: Proc. IEEE ICCV, pp. 1110–1116 (2003)
Zhao, T., Nevatia, R.: Tracking multiple humans in complex situations. IEEE Trans. PAMI 7, 1208–1221 (2004)
Rasmussen, C., Hager, G.: Probabilistic data association methods for tracking complex visual objects. IEEE Trans. PAMI 23, 560–576 (2001)
Gennari, G., Hager, G.: Probabilistic data association methods in visual tracking of groups. In: Proc. IEEE CVPR, pp. 876–881 (2004)
Vermaak, J., Godsill, S.J., Perez, P.: Monte carlo filtering for multi target tracking and data association. IEEE Trans. Aerospace and Electronic Systems 41, 309–332 (2005)
Schulz, D., Burgard, W., Fox, D., Cremers, A.: People tracking with a mobile robot using sample-based joint probabilistic data association filters. International Journal of Robotics Research 22, 99–116 (2003)
Oh, S., Russell, S., Sastry, S.: Markov chain monte carlo data association for general multiple target tracking problems. In: Proc. IEEE Conf. Decision and Control, pp. 735–742 (2004)
Khan, Z., Balch, T., Dellaert, F.: Mcmc data association and sparse factorization updating for real time multitarget tracking with merged and multiple measurements. IEEE Trans. PAMI 28, 1960–1972 (2006)
Yu, Q., Medioni, G., Cohen, I.: Multiple target tracking using spatio-temporal markov chain monte carlo data association. In: Proc. IEEE CVPR, pp. 642–649 (2007)
Cai, Y., Freitas, N.D., Little, J.J.: Robust visual tracking for multiple targets. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 125–135. Springer, Heidelberg (2006)
Khan, Z., Balch, T., Dellaert, F.: Mcmc-based particle filtering for tracking a variable number of interacting targets. IEEE Trans. PAMI 27, 1805–1819 (2005)
Qu, W., Schonfeld, D., Mohamed, M.: Real-time interactively distributed multi-object tracking using a magnetic-inertia potential model. In: Proc. IEEE ICCV, pp. 535–540 (2005)
Lanz, O., Manduchi, R.: Hybrid joint-separable multibody tracking. In: Proc. IEEE CVPR, pp. 413–420 (2005)
Sullivan, J., Carlsson, S.: Tracking and labeling of interacting multiple targets. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 661–675. Springer, Heidelberg (2006)
Nillius, P., Sullivan, J., Carlsson, S.: Multi-target tracking - linking identities using bayesian network inference. In: Proc. IEEE CVPR, pp. 2187–2194 (2006)
Li, Y., Ai, H.Z., Yamashita, T., Lao, S., Kawade, M.: Tracking in low frame rate video: A cascade particle filter with discriminative observers of different life-spans. In: Proc. IEEE CVPR, pp. 1–8 (2007)
Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. IEEE CVPR, pp. 260–267 (2006)
Zhe, L., Larry, S.D., David, D., Daniel, D.: Hierarchical part-template matching for human detection and segmentation. In: Proc. IEEE ICCV, pp. 351–358 (2007)
Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: Proc. IEEE CVPR, pp. 661–668 (2005)
Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proc. IEEE ICCV, pp. 37–63 (1999)
Davis, J., Sharma, V.: Fusion-based background-subtraction using contour saliency. In: Proc. IEEE CVPR, pp. 20–26 (2005)
Comaniciu, D., Visvanathan, R., Meer, P.: Kernel-based object tracking. IEEE Trans. PAMI 25, 564–575 (2003)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proc. IEEE CVPR, pp. 142–149 (2000)
Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. International Journal of Computer Vision 28, 5–28 (1998)
Perez, P., Hue, C., Vermaak, J.: Color-based probabilistic tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)
Lu, L., Hager, G.: Dynamic foreground/background extraction from images and videos using random patches. In: Proc. NIPS, pp. 351–358 (2006)
Breiman, L., Friedman, J.H., Olshen, R., Stone, C.J.: Classification and regression trees. Wadsworth, Chapman Hall, New York (1984)
Doucet, A., Godsill, S.J., Andrieu, C.: On sequential monte carlo sampling methods for bayesian filtering. Statistics and Computing 10, 197–208 (2000)
SCEPTRE-Dataset, http://sceptre.king.ac.uk/sceptre/default.html
Davis, J., Sharma, V.: Otcbvs benchmark dataset 03, http://www.cse.ohio-state.edu/otcbvs-bench/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Electronic Supplementary Material
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Song, X., Cui, J., Zha, H., Zhao, H. (2008). Vision-Based Multiple Interacting Targets Tracking via On-Line Supervised Learning. In: Forsyth, D., Torr, P., Zisserman, A. (eds) Computer Vision – ECCV 2008. ECCV 2008. Lecture Notes in Computer Science, vol 5304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88690-7_48
Download citation
DOI: https://doi.org/10.1007/978-3-540-88690-7_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88689-1
Online ISBN: 978-3-540-88690-7
eBook Packages: Computer ScienceComputer Science (R0)