Brain Hallucination

  • François Rousseau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5302)

Abstract

In this paper, we investigate brain hallucination, or generating a high resolution brain image from an input low-resolution image, with the help of another high resolution brain image. Contrary to interpolation techniques, the reconstruction process is based on a physical model of image acquisition. Our contribution is a new regularization approach that uses an example-based framework integrating non-local similarity constraints to handle in a better way repetitive structures and texture. The effectiveness of our approach is demonstrated by experiments on realistic Magnetic Resonance brain images generating automatically high-quality hallucinated brain images from low-resolution input.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, S., Kanade, T.: Hallucinating Faces. In: Fourth Int. Conf. on Automatic Face and Gesture Recognition (2000)Google Scholar
  2. 2.
    Baker, S., Kanade, T.: Limits on Super-Resolution and How to Break Them. IEEE Trans. Pattern Analysis and Machine Intelligence 24(9), 1167–1183 (2002)CrossRefGoogle Scholar
  3. 3.
    Bose, N.K., Chan, R.H., Ng, M.K.: Special Issue: High Resolution Image Reconstruction. Int. J. of Imaging Systems and Technology 14(2-3) (2004)Google Scholar
  4. 4.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 4(2), 490–530 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Evans, A.C.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database. In: Proceedings of 3-rd International Conference on Functional Mapping of the Human Brain, vol. 5(4) (1997)Google Scholar
  6. 6.
    Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An Optimized Blockwise Non Local Means Denoising Filter for 3D Magnetic Resonance Images. IEEE Trans. Medical Imaging (2007)Google Scholar
  7. 7.
    Datsenko, D., Elad, M.: Example-based single document image super-resolution: a global MAP approach with outlier rejection. Multidim. Syst. Sign. Process 18, 103–121 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Frakes, D.H., Dasi, L.P., Pekkan, K., Kitajima, H.D., Sundareswaran, K., Yoganathan, A.P., Smith, M.J.T.: A New Method for Registration-Based Medical Image Interpolation. IEEE Trans. Medical Imaging 27(3), 370–377 (2008)CrossRefGoogle Scholar
  9. 9.
    Gasser, T., Sroka, L., Steinmetz, C.: Residual variance and residual pattern in nonlinear regression. Biometrika 73(3), 625–633 (1986)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grevera, G.J., Udupa, J.K.: An objective comparison of 3-D image interpolation methods. IEEE Transactions on Medical Imaging 17, 642–652 (1998)CrossRefGoogle Scholar
  11. 11.
    Lehmann, T., Gonner, C., Spitzer, K.: Survey: Interpolation Methods in Medical Image Processing. IEEE Transactions on Medical Imaging 18(11), 1049–1075 (1999)CrossRefGoogle Scholar
  12. 12.
    Liu, C., Shum, H.-Y., Freeman, W.T.: Face Hallucination: Theory and Practice. Int. Journal of Computer Vision 75(1), 115–134 (2007)CrossRefGoogle Scholar
  13. 13.
    Mahmoudi, M., Sapiro, G.: Fast image and video denoising via nonlocal means of similar neighborhoods. IEEE Signal Processing Letters 12(12), 839–842 (2005)CrossRefGoogle Scholar
  14. 14.
    Penney, G.P., Schnabel, J.A., Rueckert, D., Viergever, M.A., Niessen, W.J.: Registration-Based Interpolation. IEEE Transactions on Medical Imaging 23(7), 922–926 (2004)CrossRefGoogle Scholar
  15. 15.
    Rousseau, F., Glenn, O., Iordanova, B., Rodriguez-Carranza, C., Vigneron, D., Barkovich, J., Studholme, C.: Registration-Based Approach for Reconstruction of High-Resolution in Utero Fetal MR Brain images. Academic Radiology 13(9), 1072–1081 (2006)CrossRefGoogle Scholar
  16. 16.
    van Ouwerkerk, J.D.: Image super-resolution survey. Image and Vision Computing 24, 1039–1052 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • François Rousseau
    • 1
  1. 1.LSIIT, UMR CNRS/ULPStrasbourgFrance

Personalised recommendations