Skip to main content

Optical Tools

  • Chapter
  • First Online:
Nanoscience

Abstract

Fluorescence is a physical phenomenon described for the first time in 1852 by the British scientist George G. Stokes, famous for his work in mathematics and hydrodynamics. He observed the light emitted by a mineral after excitation (absorption of light by the mineral) by UV light. He then formulated what has become known as Stokes’ law, which says that the wavelength of fluorescence emission is longer than the excitation wavelength used to generate it. Some phenomena departing from this rule were later discovered, but do not in fact invalidate it. The possibility of visible excitation was subsequently developed, with the discovery of many fluorescing aromaticmolecules, called fluorophores. The identification of these compounds and improved control over the physical phenomenon meant that by 1930 research tools had been developed in biology, e.g., labeling certain tissues and bacteria so as to observe them by fluorescence. The optical microscope as it had existed since the nineteenth century thus gave rise to the fluorescence microscope: a reflection system to supply the light required to excite the fluorophores was added to the standard microscope, together with a suitable filtering system. Fluorescence microscopy soon became an important tool for biological analysis both in vitro and ex vivo, and other applications of light emission were also devised (light-emission phenomena of which fluorescence is a special case, described further in Sect. 7.2). It became possible to study phenomena that could not be observed by standard optical microscopy. Among other things, the location of molecules inside cells, monitoring of intracellular processes, and detection of single molecules all become feasible by means of fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Section One. Introduction to Fluorescence Microscopy

  1. www.microscopyu.com/articles/fluorescence/fluorescenceintro.html (25/01/06)

  2. www.omegafilters.com/front/curvomatic/spectra.php (25/01/06)

  3. www.microscopyu.com/articles/confocal/confocalintrobasics.html (25/01/06)

  4. www.microscopyu.com/articles/fluorescencemultiphoton/multiphotonintro.html (25/01/06)

  5. Minsky, M.: Microscopy Apparatus, U.S. Patent 301467, issued December, 1961. The 1956 patent application for the Confocal Scanning Microscope is partially reproduced in the scanning article

    Google Scholar 

Section Two. Labels

  1. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 2nd edn., New York, Kluwer Academic/Plenum Publishers (1999)

    Google Scholar 

  2. Vo-Dinh, T.: Biomedical Photonics Handbook, D.C. Press (2003)

    Google Scholar 

  3. Frangioni, J.V.: In vivo near-infrared fluorescence imaging, Current Opinion in Chemical Biology 7, 626–634 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Metelev, V., Weissleder R., Bogdanov, A.: Synthesis and properties of fluorescent NF-kB-recognizing hairpin oligodeoxyribonucleotide decoys, Bioconjugate Chem. 15 (6), 1481–1487 (2004)

    Article  CAS  Google Scholar 

  5. Haugland, R.: Handbook of Fluorescent Probes and Research Products, 9th edn., Molecular Probes Inc. (2002)

    Google Scholar 

  6. Hemmilä, I., Harju, R.: In: Bioanalytical Applications of Labeling Technologies, ed. by I. Hemmilä, T. Stahlberg, P. Morttram, Walac Oy and EG&G Cie Pb. (1995) Chap. 5

    Google Scholar 

  7. Hemmilä, I., Webb, S.: Time-resolved fluorometry: An overview of the labels and core technologies for drug screening applications, Drug Discovery Today 2 (9), 373–381 (1997)

    Article  Google Scholar 

  8. Piszczek, G., et al.: Multi-photon sensitized excitation of near infrared emitting lanthanides, Journal of Fluorescence 12 (1), 15–17 (2002)

    Article  CAS  Google Scholar 

  9. White, G.F., et al.: Multi-photon excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin, Photochem. Photobiol. Sci. 3, 47–55 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. www.htrf-assays.com

  11. Chan, W.C., et al.: Luminescent quantum dots for multiplexed biological detection and imaging, Current Opinion in Biotechnology 13, 40–46 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Gao, X., et al.: In vivo molecular and cellular imaging with quantum dots, Current Opinion in Biotechnology 16, 63–72 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Smith, A.M., Gao, X., Nie, S.: Quantum dot nanocrystals for in vivo molecular and cellular imaging, Photochemistry and Photobiology 80, 377–385 (2004)

    CAS  PubMed  Google Scholar 

  14. Michalet, X., et al.: Quantum dots for live cells, in vivo imaging, and diagnostics, Science 307, 538–544 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Green, M.: Semiconductor quantum dots as biological imaging agents, Angew. Chem. Int. Ed. 43, 4129–4131 (2004)

    Article  CAS  Google Scholar 

  16. Chan, W.C., Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 281, 2016–2018 (1998)

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Sargent, E.: Infrared quantum dots, Adv. Mater. 17 (5), 515–522 (2005)

    Article  CAS  Google Scholar 

  18. Kim, S., et al.: Type II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures, J. Am. Chem. Soc. 125, 11466–11467 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Bailey, R.E., Nie, S.: Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size, J. Am. Chem. Soc. 125, 7100–7106 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Gerion, D., et al.: Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, J. Phys. Chem. B 105, 8861–8871 (2001)

    Article  CAS  Google Scholar 

  21. Bruchez, M.P., et al.: Semiconductor nanocrystals as fluorescent biological labels, Science 281, 2013–2016 (1998)

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Han, M., et al.: Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nature Biotech. 19, 631–635 (2001)

    Article  CAS  Google Scholar 

  23. Rosi, N., Mirkin, C.: Nanostructures in biodiagnostics, Chemical Review 105 (4), 1547–1562 (2005)

    Article  CAS  Google Scholar 

  24. Gaponik, N., et al.: Toward encoding combinatorial libraries: Charge driven microencapsulation of semiconductor nanocrystals luminescing in the visible and near IR, Adv. Mater. 14 (12), 879–882 (2002)

    Article  CAS  Google Scholar 

  25. Kim, S., Bawendi, M.G.: Oligomeric ligands for luminescent and stable nonocrystal quantum dots, J. Am. Chem. Soc. 125, 14652–14653 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. Pathak, S., et al.: Hydroxylated quantum dots as luminescent probes for in-situ hybridization, J. Am. Chem. Soc. 123, 4103–4104 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Mattoussi, H., et al.: Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc. 122, 12142–12150 (2000)

    Article  CAS  Google Scholar 

  28. Larson, J.P., et al.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo, Science 300, 1434–1436 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Kim, S., et al.: Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nature Biotechnology 22 (1), 93–97 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Parak, W.J., et al.: Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks, Advanced Materials 14 (12), 882–885 (2002)

    Article  CAS  Google Scholar 

  31. Jaiswal, J.K., et al.: Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nature Biotechnology 21, 47–51 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Derfus, A.M., Chan, W.C., Bhatia, S.N.: Intracellular delivery of quantum dots for live cell labeling and organelle tracking, Advanced Materials 16 (12), 961–966 (2004)

    Article  CAS  Google Scholar 

  33. Akerman, M.E., et al.: Nanocrystal targeting in vivo, PNAS 99 (20), 12617–12621 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Ballou, B., et al.: Non invasive imaging of quantum dots in mice, Bioconjugate Chem. 79–86 (2004)

    Google Scholar 

  35. Dubertret, B., et al.: In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science 298, 1759–1762 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Gao, X., et al.: In vivo cancer targeting and imaging with semiconductor quantum dots, Nature Biotech. 22 (8), 969–976 (2004)

    Article  CAS  Google Scholar 

  37. Hoshino, A., et al.: Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body, Biochem. Biophys. Res. Comm. 314, 46–53 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. Derfus, A.M., Chan, W.C., Bhatia, S.N.: Probing the cytotoxicity of semiconductor quantum dots, Nano Letters 4 (1), 11–18 (2004)

    Article  CAS  ADS  Google Scholar 

  39. Gerion, D., et al.: Sorting fluorescent nanocrystals with DNA, J. Am. Chem. Soc. 124, 7070 (2002)

    Article  CAS  PubMed  Google Scholar 

  40. Wu, X., et al.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nature Biotechnology 21, 41–46 (2003)

    Article  CAS  PubMed  Google Scholar 

  41. Jaiswal, J.K., et al.: Use of quantum dots for live cell imaging, Nature Methods 1 (1), 73–78 (2004)

    Article  PubMed  MathSciNet  Google Scholar 

  42. Mitchell, P.: Turning the spotlight on cellular imaging, Nat. Biotechnol. 19, 1013–1017 (2001)

    Article  CAS  PubMed  Google Scholar 

  43. Auzel, F.: Upconversion and anti-Stokes processes with f and d ions in solids, Chem. Rev. 104, 139–173 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. Zijlmans, H., et al.: Detection of cell and tissue surface antigens using up-converting phosphors: A new reporter technology, Analytical Biochemistry 267, 30–36 (1999)

    Article  CAS  PubMed  Google Scholar 

  45. Ostermayer, F.: Preparation and properties of infrared-to-visible conversion phosphors, Metall. Trans. 752, 747–755 (1971)

    Article  Google Scholar 

  46. Corstjens, P., et al.: Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay, Analytical Biochemistry 312, 191–200 (2003)

    Article  CAS  PubMed  Google Scholar 

  47. Niebdala, R.S., et al.: Detection of analytes by immunoassay using up-converting phosphor technology: A new reporter technology, Analytical Biochemistry 293, 22–30 (2001)

    Article  CAS  Google Scholar 

  48. Van de Rijke, F., et al.: Up-converting phosphor reporters for nucleic acid microarrays, Nature Biotechnology 19, 273–276 (2001)

    Article  CAS  Google Scholar 

  49. Santra, S., et al.: Luminescent nanoparticle probes for bioimaging, J. Nanosci. Nanotech. 4 (6), 590–599 (2004)

    Article  CAS  Google Scholar 

  50. Battersby, B., et al.: Optical barcoding of colloidal suspensions: Applications in genomics, proteomics and drug discovery, Chem. Commun. 1435–1441 (2002)

    Google Scholar 

  51. Santra, S., et al.: TAT conjugated, FITC doped silica nanoparticles for bioimaging applications, Chem. Commun. 2810–2811 (2004)

    Google Scholar 

  52. Ow, H., et al.: Bright and stable core–shell fluorescent silica nanoparticles, Nano Letters 5 (1), 113–117 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Li, Z.F., Ruckenstein, E.: Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels, Nano Letters 4 (8), 1463–1467 (2004)

    Article  CAS  ADS  Google Scholar 

  54. Roy, I., et al.: Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery, PNAS 102 (2), 279–284 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Sastry, M., et al.: New approaches to the synthesis of anisotropic, core–shell and hollow metal nanostructures, J. Mater. Chem. 15, 3161–3174 (2005)

    Article  CAS  Google Scholar 

  56. Kelly, K., et al.: The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment, J. Phys. Chem. B 107, 668–677 (2003)

    Article  CAS  Google Scholar 

  57. Elghanian, R., et al.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science 277, 1078–1081 (1997)

    Article  CAS  PubMed  Google Scholar 

  58. Aslan, K., et al.: Metal-enhanced fluorescence: An emerging tool in biotechnology, Current Opinion in Biotechnology 16, 55–62 (2005)

    Article  CAS  PubMed  Google Scholar 

  59. Cao, Y., Jin, R., Mirkin, C.: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science 297, 1536–1540 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Paroo, Z., et al.: Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden, Molecular Imaging 3 (2), 117–124 (2004)

    Article  PubMed  Google Scholar 

  61. Ciana, P., et al.: Engineering of a mouse for the in vivo profiling of estrogen receptor activity, Mol. Endocrinol. 15, 1104–1113 (2001). For a review: Maggi, A., Ciana, P.: Reporter mice and drug discovery and development, Nat. Rev. Drug Discov. 4 (3), 249–255 (2005)

    Google Scholar 

  62. Clemens, T.L., et al.: Analysis of osteocalcin expression in transgenic mice reveals a species difference in vitamin D regulation of mouse and human osteocalcin genes, J. Bone Miner. Res. 12, 1570–1576 (1997)

    Article  CAS  PubMed  Google Scholar 

  63. De Wet, J.R., et al.: Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli, Proc. Natl. Acad. Sci. USA 82, 7869–7873 (1985)

    Article  ADS  Google Scholar 

  64. Wood, K.V., et al.: Synthesis of active firefly luciferase by in vitro translation of RNA obtained from adult lanterns, Biochem. Biophys. Res. Comm. 124, 592–596 (1984)

    Article  CAS  PubMed  Google Scholar 

  65. Contag, C.H., et al.: Visualizing gene expression in living mammals using a bioluminescent reporter, Photochem. Photobiol. 66 (4), 523–531 (1997)

    Article  CAS  PubMed  Google Scholar 

  66. Matthews, J.C., Hori, K., Cormier, M.J.: Purification and properties of Renilla reniformis luciferase, Biochemistry 16, 85–91 (1977)

    Article  CAS  PubMed  Google Scholar 

  67. Shimomura, O.: The discovery of aequorin and green fluorescent protein, J. Microsc. 217, 1–15 (2005)

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  68. Chalfie, M., et al.: Green fluorescent protein as a marker for gene expression, Science 263, 802–805 (1994)

    Article  CAS  PubMed  ADS  Google Scholar 

  69. Shaner, N.C., et al.: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein, Nat. Biotechnol. 22 (12), 1567–1572 (2004)

    Google Scholar 

  70. Troy, T., et al.: Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models, Molecular Imaging 3 (1), 9–23 (2004)

    Article  CAS  PubMed  Google Scholar 

  71. Ridgway, E.B., Ashley, C.C.: Calcium transients in single muscle fibers, Biochem. Biophys. Res. Commun. 29 (2), 229–234 (1967)

    Article  CAS  PubMed  Google Scholar 

  72. Inouye, S., Tsuji, F.I.: Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein, FEBS Lett. 341 (2–3), 277–280 (1994)

    Google Scholar 

  73. Rogers, K.L., al.: Visualization of local Ca2 +  dynamics with genetically encoded bioluminescent reporters, Eur. J. Neurosci. 21 (3), 597–610 (2005)

    Google Scholar 

  74. Wilson, T., Hastings, J.W.: Bioluminescence, Annu. Rev. Cell. Dev. Biol. 14, 197–230 (1998)

    Article  CAS  PubMed  Google Scholar 

  75. Johnson, F.H., et al.: Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea, Physiol. 60, 85–103 (1962)

    CAS  Google Scholar 

  76. Johnson, F.H., al.: Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea, J. Cell. Comp. Physiol. 59, 223–239 (1962)

    Google Scholar 

Section Three. In Vivo Detection Systems

  1. Weissleder, R.: Scaling down imaging: Molecular mapping of cancer in mice, Nature Reviews 2, 1–8 (2002)

    Google Scholar 

  2. Massoud, T.F., Gambhir, S.S.: Molecular imaging in living subjects: Seeing fundamental biological processes in a new light, Genes & Development 17, 545–580 (2003)

    Article  CAS  Google Scholar 

  3. Ishimaru, A.: Wave Propagation and Scattering in Random Media, Academic Press, New York (1978)

    Google Scholar 

  4. Cheong, W.F., Prahl, S.A., Welsh, A.J.: A review of the optical properties of biological tissues, IEEE J. Quantum Electron. 26, 2166–2185 (1990)

    Article  ADS  Google Scholar 

  5. Weissleder, R.: A clearer vision for in vivo imaging, Nature Biotechnology 19, 316–317 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Hollis, V.S.: Non invasive monitoring of brain tissue temperature by near infrared spectroscopy, Thesis, University of London (2002) pp. 65–66

    Google Scholar 

  7. Taroni, P., Torricelli, A., Spinelli, L., Pifferi, A., Arpaia, F., Danesini, G., Cubeddu, R.: Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions, Physics in Medicine and Biology 50, 2469–2488 (2005)

    Article  PubMed  ADS  Google Scholar 

  8. Ntziachristos, V., Weissleder, R.: Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media, Medical Physics 29, 803–809 (2002)

    Article  PubMed  ADS  Google Scholar 

  9. Weissleder, R., et al.: In vivo imaging of tumors with protease activated near infrared fluorescent probes, Nature Biotech. 17, 375–378 (1999)

    Article  CAS  Google Scholar 

  10. Texier, I., et al.: Vecteur biologique ciblé fonctionnalisé par une fonction d’imagerie, Patent EN 05 07784 (2005)

    Google Scholar 

  11. Razkin, J., Josserand, V., Boturyn, D., Jin, Z., Dumy, P., Favrot, M.C., Coll, J.-L., Texier, I.: Activatable fluorescent probes for tumour-targeting imaging in live mice, ChemMedChem, 1 (10), 1069–1072 (2006); Jin, Z., Razkin, J., Josserand, V., Boturyn, D., Grichine, A., Texier, I., Favrot, M.-C., Dumy, P., Coll, J.-L.: In vivo non invasive optical imaging of receptor-mediated RGD internalization using self-quenched Cy5-labeled RAFT-c-(-RGDfK)4, Molecular Imaging 6 (1), 43–55 (2007)

    Google Scholar 

  12. Kim, S., et al.: Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nature Biotechnology 22 (1), 93–97 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Kim, S., Bawendi, M.G.: Oligomeric ligands for luminescent and stable nonocrystal quantum dots, J. Am. Chem. Soc. 125, 14652–14653 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Ntziachristos, V., Weissleder, R.: Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media, Medical Physics 29, 803–809 (2002)

    Article  PubMed  ADS  Google Scholar 

  15. Dunsby, C., French, P.M.W.: Techniques for depth-resolved imaging through turbid media including coherence-gated imaging, Journal of Physics D: Applied Physics 36, R207–R227 (2003)

    Article  CAS  ADS  Google Scholar 

  16. Godavarty, A., Sevick-Muraca, E.M., Eppstein, M.J.: Three-dimensional fluorescence lifetime tomography, Medical Physics 32, 992–1000 (2005)

    Article  PubMed  ADS  Google Scholar 

  17. Becker, W., Bergmann, A., Biscotti, G., Rück, A.: Advanced time-correlated single photon counting technique, presented at: Commercial and Biomedical Applications of Ultrafast Lasers IV (2004)

    Google Scholar 

  18. Zint, C.V., Uhring, W., Torregrossa, M., Cunin, B., Poulet, P.: Streak camera: A multidetector for diffuse optical tomography, Applied Optics 42, 3313–3320 (2003)

    Article  PubMed  ADS  Google Scholar 

  19. D’Andrea, C., Comelli, D., Pifferi, A., Torricelli, A., Valentini, G., Cubeddu, R.: Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera, Journal of Physics D: Applied Physics 36, 1675–1681 (2003)

    Article  ADS  Google Scholar 

  20. Patterson, M.S., Chance, B., Wilson, B.C.: Time resolved reflectance and transmittance for the non invasive measurement of tissue optical properties, Applied Optics 28, 2331–2336 (1989)

    Article  ADS  CAS  Google Scholar 

  21. Liebert, A., Wabnitz, H., Grosenick, D., Moller, M., Macdonald, R., Rinneberg, H.: Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons, Applied Optics 42, 5785–5792 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A., Valentini, G.: Experimental test of theoretical models for time-resolved reflectance, Med. Phys. 9, 1625–1633 (1996)

    Article  Google Scholar 

  23. Laidevant, A., Da Silva, A., Berger, M., Dinten, J.-M.: Experimental study of time-resolved measurements on turbid media: Determination of optical properties and fluorescent inclusion characterization, Proceedings of SPIE 5859 (2005)

    Google Scholar 

  24. Taroni, P., Torricelli, A., Spinelli, L., Pifferi, A., Arpaia, F., Danesini, G., Cubeddu, R.: Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions, Physics in Medicine and Biology 50, 2469–2488 (2005)

    Article  PubMed  ADS  Google Scholar 

  25. Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A., Valentini, G., Rinaldi, F., Sorbellini, E.: Fluorescence lifetime imaging: An application to the detection of skin tumors, IEEE Journal of Selected Topics in Quantum Electronics 5, 923–929 (1999)

    Article  CAS  Google Scholar 

  26. Lam, S., Lesage, F., Intes, X.: Time domain fluorescent diffuse optical tomography: Analytical expressions, Optics Express 13, 2263–2275 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Ntziachristos, V., Ma, X., Yodh, A.G., Chance, B.: Multichannel photon counting instrument for spatially resolved near infrared spectroscopy, Review of Scientific Instruments 70, 193–201 (1999)

    Google Scholar 

Section Four. In Vitro Detection Systems

  1. Pirrung, M.C.: How to make a DNA chip, Angewandte Chemie International Edition 41 (8), 1276–1289 (2002)

    Article  CAS  Google Scholar 

  2. Zuber, E.: Approche biométrique de la dynamique de réactions antigène–anticorps, PhD Thesis, Université Claude Bernard Lyon 1 (1997)

    Google Scholar 

  3. Wang, S.P., Grayston, J.T.: Immunologic relationship between genital TRIC, lymphogranuloma venereum, and related organisms in a new microtiter indirect immunofluorescence test, Am. J. Ophthalmol. 70 (3), 367–374 (1970)

    CAS  PubMed  Google Scholar 

  4. Gallo, G., Riggs, J.L., Schachter, J., Emmons, R.W.: Multiple-antigen slide test for detection of immunoglobulin M antibodies in newborn and infant sera by immunofluorescence, J. Clin. Microbiol. 13 (4), 631–636 (1981)

    CAS  PubMed  Google Scholar 

  5. Hawkes, R.: Identification of concanavalin A-binding proteins after sodium dodecyl sulfate-gel electrophoresis and protein blotting, Analytical Biochemistry 123 (I 1), 143–146 (1982)

    Google Scholar 

  6. Ekins, R., Chu, F., Biggart, E.: Development of microspot multi-analyte ratiometric immunoassay using dual fluorescent-labelled antibodies, Analytica Chimica Acta 227, 73–96 (1989)

    Article  CAS  Google Scholar 

  7. Hirschfeld, S.: Assaying for a multiplicity of antigens or antibodies with a detection compound, US4 514 508 (1982)

    Google Scholar 

  8. Khrapko, K., Lysov, Yu., Khorlin, A., Shick, V., Florentiev, V., Mirzabekov, A.: An oligonucleotide hybridization approach to DNA sequencing, FEBS Letters 256, 118–122 (1989)

    Google Scholar 

  9. Fodor, S.P.A., Read, J.L., Pirrung, M.C., Stryer, L., Lu, A.T., Solas, D.: Light-directed, spatially addressable parallel chemical synthesis, Science 251, 767–773 (1991)

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Glezos, N., Misiakos, K., Kakabakos, S., Petroub, P., Terzoudic, G.: Electron beam patterning of biomolecules, Biosensors & Bioelectronics 17 (4), 279–282 (2002)

    Article  CAS  Google Scholar 

  11. DeRisi, J.L., Iyer, V.R., Brown, P.O., Exploring the metabolic and genetic control of gene expression on a genomic scale, Science 278, 680–686 (1997)

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Lashkari, D.A., DeRisi, J.L., McCusker, J.H., Namath, A.F., Gentile, C., Hwang, S.Y., Brown, P.O., Davis, R.W.: Yeast microarrays for genome wide parallel genetic and gene expression analysis, Proc. Natl. Acad. Sci. 94, 13057–13062 (1997)

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Wastiaux, G.: La microscopie optique moderne, Tec et Doc Lavoisier (1994)

    Google Scholar 

  14. Wilson, T.: Confocal Microscopy, Academic Press (1990)

    Google Scholar 

  15. Wodicka, L., Dong, H., Mittmann, M., Ho, M.H, Lockhart, D.J.: Genome-wide expression monitoring in Saccharomyces cerevisiae, Nature Biotechnology 15, 1359–1367 (1997)

    Google Scholar 

  16. Narang, U., Gauger, P.R., Ligler, F.S.: Capillary-based displacement flow immunosensor, Anal. Chem. 69 (10), 1961–1964 (1997)

    Article  CAS  Google Scholar 

  17. Cesaro-Tadic, S., Dernick, G., Juncker, D., Buurman, G., Kropshofer, H., Michel, B., Fattinger, C., Delamarche, E.: High-sensitivity miniaturized immunoassays for tumor necrosis factor using microfluidic systems, Lab on a Chip 4 (6), 563–569 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Mallard, F., Marchand, G., Ginot, F., Campagnolo, R.: Opto-electronic DNA chip: High performance chip reading with an all-electric interface, Biosensors and Bioelectronics 20 (9), 1813–1820 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Ligler, F.S., Breimer, M., Golden, J.P., Nivens, D.A., Dodson, J.P., Green, T.M., Haders, D.P., Sadik, O.A.: Integrating waveguide biosensor, Anal. Chem. 74 (3), 713–719 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Dill, K., Montgomery, D.D., Ghindilis, A.L., Schwarzkopf, K.R., Ragsdale, S.R., Oleinikov, A.V.: Immunoassays based on electrochemical detection using microelectrode arrays, Biosensors and Bioelectronics 20 (4), 736–742 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. Yang, J.M., Bell, J., Huang, Y., Tirado, M., Thomas, D., Forster, A.H., Haigis, R.W., Swanson, P.D., Wallace, R.B., Martinsons, B., Krihak, M.: An integrated, stacked microlaboratory for biological agent detection with DNA and immunoassays, Biosensors and Bioelectronics 17 (6–7), 605–618 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Rowe, C.A., Tender, L.M., Feldstein, M.J., Golden, J.P., Scruggs, S.B., MacCraith, B.D., Cras, J.J., Ligler, F.S.: Array biosensor for simultaneous identification of bacterial, viral, and protein analytes, Anal. Chem. 71 (17), 3846–3852 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. Tschmelaka, J., Proll, G., Riedt, J., et al.: Automated water analyser computer supported system (AWACSS) Part I: Project objectives, basic technology, immunoassay development, software design and networking, Biosensors and Bioelectronics 20 (8), 1499–1508 (2005)

    Article  CAS  Google Scholar 

  24. Livache, T., Roget, A., Dejean, E., Barthet, C., Bidan, G., Téoule, R.: Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group, Nucleic Acids Res. 22 (15), 2915–2921 (1994)

    Article  CAS  PubMed  Google Scholar 

  25. Holt, D.B., Gauger, P.R., Kusterbeck, A.W., Ligler, F.S.: Fabrication of a capillary immunosensor in polymethyl methacrylate, Biosensors and Bioelectronics 17 (1–2), 95–103 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P., Fodor, S.P.A.: Light-generated oligonucleotide arrays for rapid DNA sequence analysis, PNAS 91, 5022–5026 (1997)

    Article  ADS  Google Scholar 

  27. Beier, M., Hoheisel, J.H.: Production by quantitative photolithographic synthesis of individually quality checked DNA microarrays, Nucleic Acids Res. 28 (4), e11 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. Dontha, N., Nowall, W.B., Werner, G., Kuhr, W.G.: Generation of biotin/avidin/enzyme nanostructures with maskless photolithography, Anal. Chem. 69 (14), 2619–2625 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. Singh-Gasson, S., Green, R.D., Yue, Y., Nelson, C., Blattner, F., Sussman, M.R., Cerrina, F.: Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array, Nature Biotechnology 17 (10), 974–978 (1999)

    Article  CAS  PubMed  Google Scholar 

  30. Silzel, J.W., Cercek, B., Dodson, C., Tsay, T., Obremski, R.J.: Mass-sensing multianalyte microarray immunoassay with imaging detection, Clinical Chemistry 44 (9), 2036–2043 (1998)

    CAS  PubMed  Google Scholar 

  31. Conrad, D.W., Davis, A.V., Golightley, S.K., Bart, J.C., Ligler, F.S.: Photoactivatable silanes for the site-specific immobilization of antibodies, Proc. SPIE Int. Soc. Opt. Eng. 2978, 12–21 (1997)

    CAS  ADS  Google Scholar 

  32. Roost, F.W.D.: Quantitative Fluorescence Microscopy, Cambridge University Press (1991)

    Google Scholar 

  33. Rouessac, F., Rouessac, A.: Analyse chimique, méthodes et techniques instrumentales modernes, Masson, Paris (1994)

    Google Scholar 

  34. Sabanayagam, C.R., Smith, C.S., Cantor, C.R.: Oligonucleotide immobilization on micropatterned streptavidin surfaces, NAR 28 (8), E33–00 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. Seliger, H., Hinz, M., Happ, E.: Arrays of immobilized oligonucleotides – Contributions to nucleic acid technology, Current Pharmaceutical Biotechnology 4 (6), 379–395 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. Ivarsson, B., Ulf, J., Sjolander, S., Stanghlberg, R., Sjodin, H.: Optical biosensor system, US 5313264 (1989)

    Google Scholar 

  37. Berg, O.G., Blomberg, C.: Association kinetics with coupled diffusional flows: Special application to the lac repressor–operator system, Biophysical Chemistry 4 (I4), 367–381 (1976)

    Google Scholar 

  38. Thompson, N.L., Burghardt, T.P., Axelrod, D.: Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy, Biophysical Journal 33 (3), 435–454 (1981)

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Benner, R.E., Dornhaus, R., Chang, R.K.: Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface, Optics Communications 30 (2), 145–149 (1979)

    Article  CAS  ADS  Google Scholar 

  40. Attridge, J.W., Daniels, P.B., Deacon, J.K., Robinson, G.A., Davidson, G.P.: Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay, Biosensors and Bioelectronics 6, 201–214 (1991)

    Article  CAS  PubMed  Google Scholar 

  41. Sullivan, K.G., King, O., Sigg, C., Hall, D.G.: Directional, enhanced fluorescence from molecules near a periodic surface, Applied Optics 33 (13), 2447–2454 (1994)

    Article  CAS  ADS  Google Scholar 

  42. Chance, R.R., Prock, A., Silbey, R.: Molecular fluorescence and energy transfer near interfaces. In: Advances in Chemical Physics, Vol. XXXVII, ed. by I. Prigogine, S.R. Rice (1978) pp. 1–65

    Google Scholar 

  43. Enderlein, J., Ruckstuhl, T., Seeger, S.: Highly efficient optical detection of surface generated fluorescence, Applied Optics 38 (14), 724–732 (1999)

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Perraut, F., Chaton, P., Pouteau, P.: Amplification d’un signal de fluorescence émis par un échantillon surfacique, WO0140778 (2000)

    Google Scholar 

  45. Bras, M., Dugas, V., Bessueille, F., Cloarec, J.P., Martin, J.R., Cabrera, M., Chauvet, J.P., Souteyrand, E., Garrigues, M.: Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray, Biosensors and Bioelectronics 20 (I4), 797–806 (2004)

    Google Scholar 

  46. Stambouli, V., Labeau, M., Matko, I., Chenevier, B., Renault, O., Guiducci, C., Chaudouët, P., Roussel, H., Nibkin, D., Dupuis, E.: Development and functionalisation of Sb doped SnO2 thin films for DNA biochip applications, Sensors and Actuators B: Chemical 113 (I2), 1025–1033 (2006)

    Google Scholar 

  47. Lakowicz, J.R., Malicka, J., Gryczynski, I., Gryczynski, Z., Geddes, C.D.: Radiative decay engineering: The role of photonic mode density in biotechnology, Journal of Physics D: Applied physics 36, R240–R249 (2003)

    Article  CAS  ADS  Google Scholar 

  48. Neuschäfer, D., Budach, W., Wanke, C., Chibout, S.D.: Evanescent resonator chips: A universal platform with superior sensitivity for fluorescence-based microarrays, Biosensors and Bioelectronics 18 (I4), 489–497 (2003)

    Google Scholar 

  49. Unger, M., Kartalov, E., Chiu, C.S., Lester, H.A., Quake, S.R.: Single molecule fluorescence observed with mercury lamp illumination, Biotechniques 27 (5), 1008–1014 (1999)

    PubMed  Google Scholar 

  50. Yershov, G., Barsky, V., Belgovskiy, A., Kirillov, E., Kreindlin, E., Ivanov, I., Parinov, S., Guschin, D., Drobishev, A., Dubiley, S., Mirzabekov, A.: DNA analysis and diagnostics on oligonucleotide microchips, PNAS 93 (10), 4913–4918 (1996)

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Hellen, E.H., Axelrod, A.: Fluorescence emission at dielectric and metal-film interfaces, JOSA l4, 337–350 (1987)

    Google Scholar 

  52. Hindson, B.J., Brown, S.B., Marshall, G.D., McBride, M.T., Makarewicz, A.J., Gutierrez, D.M., Wolcott, D.K., Metz, T.R., Madabhushi, R.S., Dzenitis, J.M., Colston, B.W.: Development of an automated sample preparation module for environmental monitoring of biowarfare agents, Anal. Chem. 76 (13), 3492–3497 (2004)

    Article  CAS  PubMed  Google Scholar 

  53. Marsoner, H., Karpf, H., Leitner, A.: Sensor element for determination of concentration of substances, US 4755667 (1988)

    Google Scholar 

  54. Marsoner, H., Kroneis, H., Karpf, H., Wolfbeis, O., List, H., Leitner, A.: Sensor element for determination of concentration of substances, US 5039490 (1991)

    Google Scholar 

  55. Misiakos, K., Kakabakos, S.E., Petrou, P.S., Ruf, H.H.: A monolithic silicon optoelectronic transducer as a real-time affinity biosensor, Anal. Chem. 76 (5), 1366–1373 (2004)

    Article  CAS  PubMed  Google Scholar 

  56. Park, S., Taton, T.A., Mirkin, C.A. Array-based electrical detection of DNA with nanoparticle probes, Science 295 (5559), 1503–1506 (2002)

    CAS  PubMed  ADS  Google Scholar 

  57. Singhal, P., Kuhr, W.G.: Ultrasensitive voltammetric detection of underivatized oligonucleotides and DNA, Anal. Chem. 69 (23), 4828–4832 (1997)

    Article  CAS  PubMed  Google Scholar 

  58. Popovich, N.D., Eckhardt, A.E., Mikulecky, J.C., Napier, M.E., Thomas, R.S.: Electrochemical sensor for detection of unmodified nucleic acids, Talanta 56 (5), 821–828 (2002)

    Article  CAS  PubMed  Google Scholar 

  59. Sheehan, P.E., Whitman, L.J.: Detection limits for nanoscale biosensors, Nano Letters 5 (4), 803–807 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Li, Z., Chen, Y., Li, X., Kamins, T.I., Nauka, K., Williams, R.S.: Sequence-specific label-free DNA sensors based on silicon nanowires, Nano Letters 4 (2), 245–247 (2004)

    Article  ADS  CAS  Google Scholar 

  61. Hahm, J., Lieber, C.M.: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors, Nano Letters 4 (1), 51–54 (2004)

    Article  CAS  ADS  Google Scholar 

  62. Lu, G.N., Ben Chouikha, M., Sou, G., Sedjil, M.: Colour detection using a buried double p–n junction structure implemented in the CMOS process, Electron. Lett. 213, 594–596 (1996)

    Google Scholar 

  63. Eggers, M., Hogan, M., Reich, R.K., Lamture, J., Ehrlich, D., Hollis, M., Kosicki, B., Powdrill, T., Beattie, K., Smith, S., et al.: A microchip for quantitative detection of molecules utilizing luminescent and radioisotope reporter groups, Biotechniques 17 (3), 516–525 (1994)

    CAS  PubMed  Google Scholar 

  64. Perraut, F., Lagrange, A., Pouteau, P., Peyssonneaux, O., Puget, P., McGall, G., Menou, L., Gonzalez, R., Labeye, P., Ginot, F.: A new generation of scanners for DNA chips, Biosensors and Bioelectronics 17, 803–813 (2002)

    Article  CAS  PubMed  Google Scholar 

  65. Vo-Dinh, T., Alarie, J.P., Isola, N., Landis, D., Wintenberg, A.L., Ericson, M.N.: DNA biochip using a phototransistor integrated circuit, Anal. Chem. 74 (2), 358–363 (1999)

    Article  Google Scholar 

  66. Lim, D.V.: Detection of microorganisms and toxins with evanescent wave fiber-optic biosensors, Proceedings of the IEEE 91 (6), 902–907 (2003)

    Article  CAS  Google Scholar 

  67. Stimpson, D.I., Hoijer, J.V., Hsieh, W.T., Jou, C., Gordon, J., Theriault, T., Gamble, R., Baldeschwieler, J.D.: Real-time detection of DNA hybridization and melting on oligonucleotide arrays by using optical wave guides, PNAS 92 (14), 6379–6383 (1995)

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Duveneck, G.L., Pawlak, M., Ehrat, M., Neuschäfer, D., Bär, E., Budach, W., Pieles, U.: Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides, Sensors and Actuators B: Chemical 38 (1–3), 88–95 (1997)

    Article  Google Scholar 

  69. Hofmann, O., Voirin, G., Niedermann, P., Manz, A.: Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. Application to immunoassays on planar optical waveguides, Anal. Chem. 74 (20), 5243–5250 (2002)

    Google Scholar 

  70. Labeye, P., Pouteau, P., Perraut, F., Ginot, F.: Dispositif de lecture de fluorescence intégrée, FR 2846420 (2002)

    Google Scholar 

  71. Lundgreen, J.S., Neal Watkins, A., Racz, D., Ligler, F.S.: A liquid crystal pixel array for signal discrimination in array biosensors, Biosensors and Bioelectronics 15, 417–421 (2000)

    Google Scholar 

  72. Choudhury, B.J., Shinar, R., Shinar, J.: Luminescent chemical and biological sensors based on the structural integration of an OLED excitation source with a sensing component. In: Organic Light-Emitting Materials and Devices VII, ed. by Z.H. Kafafi, P.A. Lane, Proceedings of the SPIE 5214, 64–72 (2004)

    Google Scholar 

  73. Edel, J.B., Beard, N.P., Hofmann, O., deMello, J.C., Bradley, D.D.C., deMello, A.J.: Thin-film polymer light emitting diodes as integrated excitation sources for microscale capillary electrophoresis, Lab on a Chip 4 (2), 136–140 (2004)

    Article  CAS  PubMed  Google Scholar 

  74. Savvate’ev, V., Chen-Esterlit, Z., Aylott, J.W., Choudhury, B., Kim, C.H., Zou, L., Friedl, J.H., Shinar, R., Shinar, J., Kopelman, R.: Integrated organic light-emitting device/fluorescence-based chemical sensors, Applied Physics Letters 81 (24), 4652–4654 (2002)

    Article  ADS  CAS  Google Scholar 

  75. Chediak, J.A., Luo, Z., Seo, J., Cheung, N., Lee, L.P., Sands, T.D.: Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems, Sensors and Actuators A: Physical 111 (I1), 1–7 (2004)

    Google Scholar 

General Reading

  1. Kamoun, P.: Appareils et méthodes en biochimie et biologie moléculaire, Flammarion Médecine-sciences, Paris (1997)

    Google Scholar 

  2. Lacowicz, J.R.: Principles of Fluorescence Spectroscopy, Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  3. Péré, J.P.: La microscopie, Nathan, Paris (1994)

    Google Scholar 

Section Five. Other Detection Systems

  1. Lippincott-Schwartz, J., Snapp, E., Kenworthy, A.: Nat. Rev. Mol. Cell. Biol. 2 (6), 444–456 (2001)

    Article  CAS  Google Scholar 

  2. Crank, J.: The Mathematics of Diffusion, Oxford University Press, New York (1975)

    Google Scholar 

  3. Axelrod, D., et al.: Biophys. J. 16 (9), 1055–1069 (1976)

    CAS  Google Scholar 

  4. Feder, T.J., et al.: Biophys. J. 70 (6), 2767–2773 (1996)

    CAS  Google Scholar 

  5. Edidin, M., Zuniga, M.C., Sheetz, M.P.: Proc. Natl. Acad. Sci. USA, 91 (8), 3378–3382 (1994)

    Article  CAS  ADS  Google Scholar 

  6. Edidin, M., Stroynowski, I.: J. Cell. Biol. 112 (6), 1143–1150 (1991)

    Article  CAS  Google Scholar 

  7. Kenworthy, A.K., et al.: J. Cell. Biol. 165 (5), 735–746 (2004)

    Article  CAS  Google Scholar 

  8. Cole, N.B., et al.: Science 273 (5276), 797–801 (1996)

    Google Scholar 

  9. Marguet, D., et al.: Immunity 11 (2), 231–240 (1999)

    Google Scholar 

  10. Dunn, G.A., et al.: J. Microsc. 205 (Pt 1), 109–112 (2002)

    Article  CAS  MathSciNet  Google Scholar 

  11. Mallavarapu, A., Mitchison, T.: J. Cell. Biol. 146 (5), 1097–1106 (1999)

    Article  CAS  Google Scholar 

  12. McGrath, J.L., et al.: Biophys. J. 75 (4), 2070–2078 (1998)

    CAS  Google Scholar 

  13. Patterson, G.H., Lippincott-Schwartz, J.: Science 297 (5588), 1873–1877 (2002)

    Google Scholar 

  14. Chudakov, D.M., et al.: Nat. Biotechnol. 22 (11), 1435–1439 (2004)

    Article  CAS  Google Scholar 

  15. Munnelly, H.M., et al.: Biophys. J. 75 (2), 1131–1138 (1998)

    CAS  Google Scholar 

  16. Davoust, J., Devaux, P.F., Leger, L.: EMBO J. 1 (10), 1233–1238 (1982)

    Google Scholar 

  17. Sanchez, S.A., Gratton, E.: Acc. Chem. Res. 38 (6), 469–477 (2005)

    Article  CAS  Google Scholar 

  18. Bacia, K., et al.: Biophys. J. 87 (2), 1034–1043 (2004)

    CAS  Google Scholar 

  19. Lenne, P.-F., et al.: EMBO J. 25 (14), 3245–3256 (2006)

    Google Scholar 

  20. Margeat, E., et al.: J. Mol. Biol. 306 (3), 433–442 (2001)

    Article  CAS  Google Scholar 

  21. Chen, Y., et al.: Biophys. J. 77 (1), 553–567 (1999)

    CAS  Google Scholar 

  22. Hess, S.T., et al.: Biochemistry 41 (3), 697–705 (2002)

    Google Scholar 

  23. Rigler, R., Elson, E.: Fluorescence Correlation Spectroscopy: Theory and Applications, Springer Series in Chemical Physics, ed. by F.P. Schäfer, W. Zinth, J.P. Toennies, Vol. 65, Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  24. Magde, D., Elson, E.L., Webb, W.W.: Phys. Rev. Lett. 29, 705 (1972)

    Article  CAS  ADS  Google Scholar 

  25. Rigler, R., et al.: Eur. Biophys. J. 22, 169–175 (1993)

    CAS  Google Scholar 

  26. Elson, E.L., Magde, D.: Biopolymers 13 (1), 1–27 (1974)

    Google Scholar 

  27. Schwille, P., et al.: Biophys. J. 77 (4), 2251–2265 (1999)

    CAS  Google Scholar 

  28. Schwille, P., et al.: Proc. Natl. Acad. Sci. USA 97 (1), 151–156 (2000)

    Article  CAS  ADS  Google Scholar 

  29. Haupts, U., et al.: Proc. Natl. Acad. Sci. USA 95 (23), 13573–13578 (1998)

    Article  CAS  ADS  Google Scholar 

  30. Chen, Y., et al.: Biophys. J. 82 (1), 133–144 (2002)

    CAS  Google Scholar 

  31. Levene, M.J., et al.: Science 299 (5607), 682–686 (2003)

    Google Scholar 

  32. Wenger, J., et al.: Biophys. J. 92 (3), 913–919 (2007)

    CAS  Google Scholar 

  33. Edel, J.B., et al.: Biophys. J. 88 (6), L43–L45 (2005)

    CAS  Google Scholar 

  34. Ruan, Q., et al.: Biophys. J. 87 (2), 1260–1267 (2004)

    CAS  Google Scholar 

  35. Digman, M.A., et al.: Biophys. J. 89 (2), 1317–1327 (2005)

    CAS  Google Scholar 

  36. Wawrezinieck, L., et al.: Proc. SPIE 5462, 92–102 (2004)

    Article  ADS  Google Scholar 

  37. Kusumi, A., Sako, Y., Yamamoto, M.: Biophys. J. 65 (5), 2021–2040 (1993)

    CAS  Google Scholar 

  38. Simson, R., et al.: Biophys. J. 74 (1), 297–308 (1998)

    CAS  MathSciNet  Google Scholar 

  39. Felsenfeld, D.P., Choquet, D., Sheetz, M.P.: Nature 383 (6599), 438–440 (1996)

    Google Scholar 

  40. Dietrich, C., et al.: Biophys. J. 82 (1 Pt 1), 274–284 (2002)

    CAS  Google Scholar 

  41. Vereb, G., et al.: Proc. Natl. Acad. Sci. USA 100 (14), 8053–8058 (2003)

    Article  CAS  ADS  Google Scholar 

  42. Kucik, D.F., Elson, E.L., Sheetz, M.P.: [published erratum appears in Biophys. J. 76 (3), 1720 (Mar 1999)] Biophys. J. 76 (1 Pt 1), 314–322 (1999)

    Google Scholar 

  43. Ueda, M., et al.: Science 294, 864–867 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Schutz, G.J., et al.: EMBO J. 19 (5), 892–901 (2000)

    Google Scholar 

  45. Seisenberger, G., et al.: Science 294, 1929–1932 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Harms, G.S., et al.: Biophys. J. 81 (5), 2639–46 (2001)

    CAS  Google Scholar 

  47. Tardin, C., et al.: EMBO J. 22 (18), 4656–4665 (2003)

    Google Scholar 

  48. Schmidt, C.E., et al.: J. Neurosci. 15 (5 Pt 1), 3400–3407 (1995)

    CAS  Google Scholar 

  49. Thompson, R.E., Larson, D.R., Webb, W.W.: Biophys. J. 82 (5), 2775–2783 (2002)

    CAS  Google Scholar 

  50. Axelrod, D.: Methods Cell. Biol. 30, 245–270 (1989)

    CAS  Google Scholar 

  51. Dickson, R.M., et al.: Science 274, 966–969 (1996)

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Bruchez, M., Jr, et al.: Science 281, 2013–2016 (1998)

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Dahan, M., et al.: Science 302, 442–445 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Boyer, D., et al.: Science 297, 1160–1163 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Berciaud, S., et al.: Phys. Rev. Lett. 93 (25), 257402 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  56. Cognet, L., et al.: Proc. Natl. Acad. Sci. USA 100 (20), 11350–11355 (2003)

    Article  CAS  ADS  Google Scholar 

  57. Förster, T.: Ann. Phys. 2, 55–75 (1948)

    MATH  Google Scholar 

  58. Tsien, R.Y.: Ann. Rev. Biochem. 67, 509–544 (1998)

    Article  CAS  Google Scholar 

  59. Wouters, F.S., Verveer, P.J., Bastiaens, P.I.H.: Trends Cell. Biol. 11, 203–211 (2001)

    CAS  Google Scholar 

  60. Miyawaki, A., et al.: Nature 388, 882–887 (1997)

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Pertz, O., Hahn, K.M.: J. Cell Sci. 117, 1313–1318 (2004)

    Article  CAS  Google Scholar 

  62. Gordon, G.W., et al.: Biophys. J. 74, 2702–2713 (1998)

    CAS  Google Scholar 

  63. Stockholm, D., et al.: J. Mol. Biol. 346, 215–222 (2005)

    Article  CAS  Google Scholar 

  64. Wouters, F.S., et al.: EMBO J. 17, 7179–7189 (1998)

    Article  CAS  PubMed  Google Scholar 

  65. Subramanian, V., et al.: Methods Enzymol. 360, 178–201 (2003)

    Article  Google Scholar 

  66. Tramier, M., et al.: Biophys. J. 83, 3570–3577 (2002)

    CAS  Google Scholar 

  67. Emiliani, V., et al.: Appl. Phys. Lett. 83, 2471–2473 (2003)

    CAS  Google Scholar 

  68. Tramier, M., et al.: Methods Enzymol. 360, 580–597 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Daniel Choquet who supported this work, Christelle Breillat, Françoise Rossignol, and Delphine Bouchet for the neuron cultures and molecular biology, Edouard Saint-Michel for the QD experiments, Julien Falk for the NrCAM-GFP plasmids, but also the CNRS, French Ministry of Research, and the Aquitaine regional council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Roncali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roncali, E. et al. (2009). Optical Tools. In: Boisseau, P., Houdy, P., Lahmani, M. (eds) Nanoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88633-4_7

Download citation

Publish with us

Policies and ethics