Skip to main content

Viral Vectors for in Vivo Gene Transfer

  • Chapter
  • First Online:
Nanoscience
  • 1788 Accesses

Abstract

The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the review [2].) For this reason, it is mainly viral vectors that are used for gene transfer in animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gros, F.: La thérapie génique, Rapport Académie des Sciences 36 (1995)

    Google Scholar 

  2. Andre, F., Mir, L.M.: DNA electrotransfer: Its principles and an updated review of its therapeutic applications, Gene Ther. 11 (Suppl. 1), S33–S42 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. Goins, F.W., et al.: Delivery using herpes simplex virus: An overview, Methods Mol. Biol. 246, 257–299 (2004)

    CAS  PubMed  Google Scholar 

  4. Naldini, L., et al.: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector, Science 272 (5259), 263–267 (1996)

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Zufferey, R., et al.: Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors, J. Virol. 73 (4), 2886–2892 (1999)

    CAS  PubMed  Google Scholar 

  6. Barquinero, J., Perez-Melgosa, M.: Retroviral vectors: New applications for an old tool, Gene Ther. 11 (Suppl. 1), S3–S9 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Delenda, C.: Lentiviral vectors: Optimization of packaging, transduction and gene expression, J. Gene Med. 6 Suppl. 1, S125–S138 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Tenenbaum, L., et al.: Recombinant AAV-mediated gene delivery to the central nervous system, J. Gene Med. 6 (Suppl. 1), S212–S222 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Verma, I.M., Weitzman, M.D.: Annu. Rev. Biochem. 74, 711–738 (2005)

    Article  CAS  Google Scholar 

  10. Sastry, L., et al.: Titering lentiviral vectors: Comparison of DNA, RNA and marker expression methods, Gene Ther. 9 (17), 1155–1162 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Escarpe, P., et al.: Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations, Mol. Ther. 8 (2), 332–341 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Sastry, L., et al.: Certification assays for HIV-1-based vectors: Frequent passage of gag sequences without evidence of replication-competent viruses, Mol. Ther. 8 (5), 830–839 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. Stratford-Perricaudet, L.D., et al.: Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector, Hum. Gene Ther. 1 (3), 241–256 (1990)

    Article  CAS  PubMed  Google Scholar 

  14. Le Gal La Salle, G., et al.: An adenovirus vector for gene transfer into neurons and glia in the brain, Science 259 (5097), 988–990 (1993)

    Google Scholar 

  15. Corti, O., et al.: Long-term doxycycline-controlled expression of human tyrosine hydroxylase after direct adenovirus-mediated gene transfer to a rat model of Parkinson’s disease, Proc. Natl. Acad. Sci. USA 96 (21), 12120–12125 (1999)

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Thévenot, E., et al.: Targeting conditional gene modification into the serotonin neurons of the dorsal raphe nucleus by viral delivery of the Cre recombinase, Mol. Cell Neurosci. 24 (1), 139–147 (2003)

    Article  PubMed  CAS  Google Scholar 

  17. Volpers, C., Kochanek, S.: Adenoviral vectors for gene transfer and therapy, J. Gene Med. 6 Suppl. 1, S164–S171 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Goyenvalle, A., et al.: Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping, Science 306 (5702), 1796–1799 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Sirninger, J., et al.: Functional characterization of a recombinant adeno-associated virus 5-pseudotyped cystic fibrosis transmembrane conductance regulator vector, Hum. Gene Ther. 15 (9), 832–841 (2004)

    CAS  PubMed  Google Scholar 

  20. Nakai, H., Storm, T.A., Kay, M.A.: Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors, Nat. Biotechnol. 18 (5), 527–532 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Deglon, N., Hantraye, P.: Viral vectors as tools to model and treat neurodegenerative disorders, J. Gene Med. 7 (5), 530–539 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Miller, A.D., et al.: A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): Gene transfer into cells obtained from humans deficient in HPRT, Proc. Natl. Acad. Sci. USA 80 (15), 4709–4713 (1983)

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Muul, L.M., et al.: Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: Long-term results of the first clinical gene therapy trial, Blood 101 (7), 2563–2569 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Cavazzana-Calvo, M., et al.: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease, Science 288 (5466), 669–672 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Hacein-Bey-Abina, S., et al.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1, Science 302 (5644), 415–419 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Aiuti, A., et al.: Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning, Science 296 (5577), 2410–2413 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Bushman, F.D.: Targeting survival: Integration site selection by retroviruses and LTR-retrotransposons, Cell 115 (2), 135–138 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. www.wiley.co.uk/genmed/clinical

  29. www4.od.nih.gov/oba/rdna.htm

    Google Scholar 

  30. Pearson et al.: Nat. Biotechnol. 2, 3–4 (2004)

    Google Scholar 

  31. Tuszynski, M.H., et al.: A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease, Nat. Med. 11 (6) 551–555 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. Kordower, J.H., et al.: Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease, Science 290 (5492), 767–773 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Fire, A., et al.: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature 391 (6669), 806–811 (1998)

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Elbashir, S.M., et al.: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells, Nature 411 (6836), 494–498 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Brummelkamp, T.R., Bernards, R., Agami, R.: A system for stable expression of short interfering RNAs in mammalian cells, Science 296 (5567), 550–553 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Abbas-Terki, T., et al.: Lentiviral-mediated RNA interference, Hum. Gene Ther. 13 (18), 2197–2201 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. Rubinson, D.A., et al.: A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference, Nat. Genet. 33 (3), 401–406 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. de Almeida, L.P., et al.: Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length, J. Neurosci. 22 (9), 3473–3483 (2002)

    PubMed  Google Scholar 

  39. Lois, C., et al.: Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors, Science 295 (5556), 868–872 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Regulier, E., et al.: Early and reversible neuropathology induced by tetracycline regulated lentiviral overexpression of mutant huntingtin in rat striatum, Hum. Mol. Genet. 12 (21), 2827–2836 (2003)

    Article  CAS  PubMed  Google Scholar 

  41. Kirik, D., Bjorklund, A.: Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors, Trends Neurosci. 26 (7), 386–392 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. Lo Bianco, C., et al.: Alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease, Proc. Natl. Acad. Sci. USA 99 (16), 10813–10818 (2002)

    Google Scholar 

  43. Kirik, D., et al.: Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: A new primate model of Parkinson’s disease, Proc. Natl. Acad. Sci. USA 100 (5), 2884–2889 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Wall, R.J., et al.: Genetically enhanced cows resist intramammary Staphylococcus aureus infection, Nat. Biotechnol. 23 (4), 445–451 (2005)

    Article  CAS  PubMed  Google Scholar 

  45. Denning, C., et al.: Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep, Nat. Biotechnol. 19 (6), 559–562 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. Fassler, R.: Lentiviral transgene vectors, EMBO Rep. 5 (1), 28–29 (2004)

    Article  PubMed  CAS  Google Scholar 

  47. Pfeifer, A., et al.: Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos, Proc. Natl. Acad. Sci. USA 99 (4), 2140–2145 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Hofmann, A., et al.: Efficient transgenesis in farm animals by lentiviral vectors, EMBO Rep. 4 (11), 1054–1060 (2003)

    Article  CAS  PubMed  Google Scholar 

  49. Hofmann, A., et al.: Generation of transgenic cattle by lentiviral gene transfer into oocytes, Biol. Reprod. 71 (2), 405–409 (2004)

    Article  CAS  PubMed  Google Scholar 

  50. McGrew, M.J., et al.: Efficient production of germline transgenic chickens using lentiviral vectors, EMBO Rep. 5 (7), 728–733 (2004)

    Article  CAS  PubMed  Google Scholar 

  51. Wolfgang, M.J., et al.: Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos, Proc. Natl. Acad. Sci. USA 98 (19), 10728–10732 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Yang, S.H., et al.: Towards a transgenic model of Huntington’s disease in a non-human primate, Nature 453, 921–924 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Hamra, F.K., et al.: Production of transgenic rats by lentiviral transduction of male germ-line stem cells, Proc. Natl. Acad. Sci. USA 99 (23), 14931–14936 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Gossen, M., Bujard, H.: Tight control of gene expression in mammalian cells by tetracycline-responsive promoters, Proc. Natl. Acad. Sci. USA 89 (12), 5547–5551 (1992)

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Urlinger, S., et al.: Exploring the sequence space for tetracycline-dependent transcriptional activators: Novel mutations yield expanded range and sensitivity, Proc. Natl. Acad. Sci. USA 97 (14), 7963–7968 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Vogel, R., et al.: A single lentivirus vector mediates doxycycline-regulated expression of transgenes in the brain, Hum. Gene Ther. 15 (2), 157–165 (2004)

    Article  CAS  PubMed  Google Scholar 

  57. Tavitian, B.: In vivo imaging with oligonucleotides for diagnosis and drug development, Gut 52 Suppl. 4, 40–47 (2003)

    Google Scholar 

  58. Shah, K., et al.: Molecular imaging of gene therapy for cancer, Gene Ther. 11 (15), 1175–1187 (2004)

    Article  CAS  PubMed  Google Scholar 

  59. Genove, G., et al.: A new transgene reporter for in vivo magnetic resonance imaging, Nat. Med. 11 (4), 450–454 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Pascal Le Masson and Chamsy Sarkis, together with Aurélie Delzor, Mario Lepore, Jean-Charles Robillard, Anne-Sophie Chaplault, Sandro Alvès, Raymonde Hassig, and Carole Escartin for their invaluable contributions to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Thévenot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thévenot, E., Dufour, N., Déglon, N. (2009). Viral Vectors for in Vivo Gene Transfer. In: Boisseau, P., Houdy, P., Lahmani, M. (eds) Nanoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88633-4_23

Download citation

Publish with us

Policies and ethics