Nanoscience pp 803-838 | Cite as

Molecular Dynamics. Observing Matter in Motion

  • C. ChipotEmail author


It is particularly important to obtain insights into the structural and dynamical aspects of ordered systems on the atomic level in order to understand the functions of such complex molecular constructions. In many cases, it is impossible to obtain microscopic detail using conventional experimental techniques. However, the genuine explosion of computer resources over the past ten years, together with the development of more effective algorithms, have made it possible to study nanomolecular assemblies of increasing complexity through the methods of theoretical chemistry. The purpose of this chapter is to examine one aspect of theoretical chemistry, namely, statistical simulations of molecular mechanics. The aim of such simulations is to gain access to the atomic detail of condensed matter through computer experiments. There are many techniques available today to do this,including molecular dynamics, stochastic dynamics and its special cases – e.g., Brownian dynamics or Langevin dynamics – or again Monte Carlo simulations. These different theoretical approaches can be viewed in many ways as a bridge between macroscopic experimental observation and its microscopic counterpart. In the following, we shall be mainly concerned with molecular dynamics [1].


Molecular Dynamic Molecular Dynamic Simulation Radial Distribution Function Potential Energy Function Free Energy Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I would like to thank my colleagues François Dehez, Jérôme Delhommelle, and Mounir Tarek for accepting to check and comment on the text, with suggestions for improving the content.


  1. 1.
    Frenkel, D., Smit, B.: Understanding Molecular Simulations: From Algorithms to Applications, Academic Press, San Diego (1996)zbMATHGoogle Scholar
  2. 2.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids, Clarendon Press, Oxford (1987)zbMATHGoogle Scholar
  3. 3.
    Ewald, P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale, Ann. Phys. 64, 253–287 (1921)CrossRefGoogle Scholar
  4. 4.
    Ladd, A.J.C.: Long-range dipolar interactions in computer simulations of polar liquids, Mol. Phys. 36, 463–474 (1978)CrossRefADSGoogle Scholar
  5. 5.
    van Gunsteren, W.F., Berendsen, H.J.C.: Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry, Angew. Chem. Int. Ed. Engl. 29, 992–1023 (1990)CrossRefGoogle Scholar
  6. 6.
    Sanbonmatsu, K.Y., Simpson, J., Tung, C.S.: Simulating movement of tRNA into the ribosome during decoding, Proc. Natl. Acad. Sci. USA 102, 15854–15859 (2005)CrossRefPubMedADSGoogle Scholar
  7. 7.
    Duan, Y., Kollman, P.A.: Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution, Science 282, 740–744 (1998)CrossRefPubMedADSGoogle Scholar
  8. 8.
    Tuckerman, M.E., Martyna, G.J.: Understanding modern molecular dynamics: Techniques and applications, J. Phys. Chem. B 104, 159–178 (2000)CrossRefGoogle Scholar
  9. 9.
    Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics, Cambridge University Press (2005)Google Scholar
  10. 10.
    Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. In: Springer Series in Computational Mathematics, Vol. 31, 2nd edn. Springer, Berlin Heidelberg New York (2006)Google Scholar
  11. 11.
    Martyna, G.J., Tuckerman, M.E., Tobias, D.J., Klein, M.L.: Explicit reversible integrators for extended systems dynamics, Mol. Phys. 87, 1117–1128 (1996)CrossRefADSGoogle Scholar
  12. 12.
    Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.C., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRefGoogle Scholar
  13. 13.
    Kollman, P., Dixon, R., Cornell, W., Fox, T., Chipot, C., Pohorille, A.: The development/application of a ‘minimalist’ force field using a combination of ab initio and experimental data. In: Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, ed. by W.F. Van Gunsteren, P.K. Weiner, Escom, The Netherlands (1997) pp. 83–96Google Scholar
  14. 14.
    Ryckaert, J., Bellemans, A.: Molecular dynamics of liquid alkanes, Chem. Soc. Faraday Discuss. 66, 95–106 (1978)CrossRefGoogle Scholar
  15. 15.
    Chipot, C., Ángyán, J.G.: Continuing challenges in the parametrization of intermolecular force fields. Towards an accurate description of electrostatic and induction terms, New J. Chem. 29, 411–420 (2005)Google Scholar
  16. 16.
    Wang, W., Skeel, R.D.: Fast evaluation of polarizable forces, J. Chem. Phys. 123, 164107 (2005)CrossRefPubMedADSGoogle Scholar
  17. 17.
    Gay, J.G., Berne, B.J.: Modification of the overlap potential to mimic a linear site–site potential, J. Chem. Phys. 74, 3316–3319 (1981)CrossRefADSGoogle Scholar
  18. 18.
    Shelley, J.C., Shelley, M.Y., Reeder, R.C., Bandyopadhyay, S., Klein, M.L.: A coarse grain model for phospholipid simulations, J. Phys. Chem. B. 105, 4464–4470 (2001)CrossRefGoogle Scholar
  19. 19.
    Nielsen, S.O., Lopez, C.F., Srinivas, G., Klein, M.L.: Coarse grain models and the computer simulation of soft materials, J. Phys.: Condens. Matter 16, R481–R512 (2004)CrossRefADSGoogle Scholar
  20. 20.
    Verlet, L.: Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159, 98–103 (1967)CrossRefADSGoogle Scholar
  21. 21.
    Martyna, G.J., Klein, M.L., Tuckerman, M.E.: Nosé–Hoover chains: The canonical distribution via continuous dynamics, J. Chem. Phys. 97, 2635–2645 (1992)CrossRefADSGoogle Scholar
  22. 22.
    Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52, 255–268 (1984)CrossRefADSGoogle Scholar
  23. 23.
    Hoover, W.G.: Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31, 1695–1697 (1985)CrossRefPubMedADSGoogle Scholar
  24. 24.
    Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81, 3684–3690 (1984)CrossRefADSGoogle Scholar
  25. 25.
    McQuarrie, D.A.: Statistical Mechanics, Harper and Row, New York (1976)Google Scholar
  26. 26.
    Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. 72, 2384–2393 (1980)CrossRefADSGoogle Scholar
  27. 27.
    Feller, S.E., Zhang, Y.H., Pastor, R.W., Brooks, B.R.: Constant pressure molecular dynamics simulations – The Langevin piston method, J. Chem. Phys. 103, 4613–4621 (1995)CrossRefADSGoogle Scholar
  28. 28.
    Barker, J.A.: Reaction field, screening, and long-range interactions in simulations of ionic and dipolar systems, Mol. Phys. 83, 1057–1064 (1994)CrossRefADSGoogle Scholar
  29. 29.
    Toukmaji, A.Y., Board Jr., J.A.: Ewald summation techniques in perspective: A survey, Comput. Phys. Comm. 95, 73–92 (1996)zbMATHCrossRefADSGoogle Scholar
  30. 30.
    Rozanska, X., Chipot, C.: Modeling ion–ion interaction in proteins: A molecular dynamics free energy calculation of the guanidinium–acetate association, J. Chem. Phys. 112, 9691–9694 (2000)CrossRefADSGoogle Scholar
  31. 31.
    Perram, J.W., Petersen, H.G., de Leeuw, S.W.: An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles, Mol. Phys. 65, 875–889 (1988)CrossRefADSGoogle Scholar
  32. 32.
    Fincham, D.: Optimisation of the Ewald sum for large systems, Mol. Sim. 13, 1–9 (1994)CrossRefGoogle Scholar
  33. 33.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19, 297–301 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Darden, T.A., York, D.M., Pedersen, L.G.: Particle mesh Ewald: An NlogN method for Ewald sums in large systems, J. Chem. Phys. 98, 10089–10092 (1993)CrossRefADSGoogle Scholar
  35. 35.
    Essman, U., Perera, L., Berkowitz, M., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method, J. Chem. Phys. 103, 8577–8593 (1995)CrossRefADSGoogle Scholar
  36. 36.
    Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles, IOP Publishing, Bristol, England (1988)zbMATHCrossRefGoogle Scholar
  37. 37.
    Chandler, D.: Introduction to Modern Statistical Mechanics, Oxford University Press (1987)Google Scholar
  38. 38.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79, 926–935 (1983)CrossRefADSGoogle Scholar
  39. 39.
    Neumann, M., Steinhauser, O.: The influence of boundary conditions used in machine simulations on the structure of polar systems, Mol. Phys. 39, 437–454 (1980)CrossRefADSGoogle Scholar
  40. 40.
    Kirkwood, J.G.: Statistical mechanics of fluid mixtures, J. Chem. Phys. 3, 300–313 (1935)CrossRefADSGoogle Scholar
  41. 41.
    Zwanzig, R.W.: High-temperature equation of state by a perturbation method. I. Nonpolar gases, J. Chem. Phys. 22, 1420–1426 (1954)Google Scholar
  42. 42.
    Bennett, C.H.: Efficient estimation of free energy differences from Monte Carlo data, J. Comp. Phys. 22, 245–268 (1976)CrossRefADSGoogle Scholar
  43. 43.
    Torrie, G.M., Valleau, J.P.: Nonphysical sampling distributions in Monte Carlo free energy estimation: Umbrella sampling, J. Comput. Phys. 23, 187–199 (1977)CrossRefADSGoogle Scholar
  44. 44.
    Hénin, J., Chipot, C.: Overcoming free energy barriers using unconstrained molecular dynamics simulations, J. Chem. Phys. 121, 2904–2914 (2004)CrossRefPubMedADSGoogle Scholar
  45. 45.
    Ben-Naim, A., Marcus, Y.: Solvation thermodynamics of nonionic solutes, J. Chem. Phys. 81, 2016–2027 (1984)CrossRefADSGoogle Scholar
  46. 46.
    Darve, E., Pohorille, A.: Calculating free energies using average force, J. Chem. Phys. 115, 9169–9183 (2001)CrossRefADSGoogle Scholar
  47. 47.
    Chipot, C.: Calculating free energy differences from perturbation theory. In: Free Energy Calculations. Theory and Applications in Chemistry and Biology, ed. by C. Chipot, A. Pohorille, Springer, Berlin Heidelberg New York (2006)Google Scholar
  48. 48.
    Couturier, R., Chipot, C.: Parallel molecular dynamics using OpenMP on a shared memory machine, Comp. Phys. Comm. 124, 49–59 (2000)zbMATHCrossRefADSGoogle Scholar
  49. 49.
    Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, L., Schulten, K.: Scalable molecular dynamics with Namd, J. Comput. Chem. 26, 1781–1802 (2005)CrossRefPubMedGoogle Scholar
  50. 50.
    Tajkhorshid, E., Nollert, P., Jensen, M.Ø., Miercke, L.J.W., O’Connell, J., Stroud, R.M., Schulten, K.: Control of the selectivity of the aquaporin water channel family by global orientational tuning, Science 296, 525–530 (2002)CrossRefPubMedADSGoogle Scholar
  51. 51.
    van Gunsteren, W.F., Mark, A.E.: Validation of molecular dynamics simulation, J. Chem. Phys. 108, 6109–6116 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Université Henri Poincaré Campus Victor Grignard BP 239Vandoeuvre-les-Nancy CedexFrance

Personalised recommendations