Advertisement

Side Channel Analysis of Some Hash Based MACs: A Response to SHA-3 Requirements

  • Praveen Gauravaram
  • Katsuyuki Okeya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5308)

Abstract

The forthcoming NIST’s Advanced Hash Standard (AHS) competition to select SHA-3 hash function requires that each candidate hash function submission must have at least one construction to support FIPS 198 HMAC application. As part of its evaluation, NIST is aiming to select either a candidate hash function which is more resistant to known side channel attacks (SCA) when plugged into HMAC, or that has an alternative MAC mode which is more resistant to known SCA than the other submitted alternatives. In response to this, we perform differential power analysis (DPA) on the possible smart card implementations of some of the recently proposed MAC alternatives to NMAC (a fully analyzed variant of HMAC) and HMAC algorithms and NMAC/HMAC versions of some recently proposed hash and compression function modes. We show that the recently proposed BNMAC and KMDP MAC schemes are even weaker than NMAC/HMAC against the DPA attacks, whereas multi-lane NMAC, EMD MAC and the keyed wide-pipe hash have similar security to NMAC against the DPA attacks. Our DPA attacks do not work on the NMAC setting of MDC-2, Grindahl and MAME compression functions.

Keywords

Applied cryptography hash functions side channel attacks HMAC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ANSI. ANSI X9.31:1998: Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA). American National Standards Institute (1998)Google Scholar
  2. 2.
    Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 299–314. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bellovin, S.M., Rescorla, E.K.: Deploying a New Hash Algorithm. In: Proceedings of NDSS. Internet Society (February 2006)Google Scholar
  6. 6.
    Biham, E., Dunkelman, O.: A framework for iterative hash functions - HAIFA. Cryptology ePrint Archive, Report 2007/278 (2007) (Accessed on 5/14/2008), http://eprint.iacr.org/2007/278
  7. 7.
    Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Bosselaers, A., Preneel, B.: Final Report of RACE Integrity Primitives Evaluation RIPE-RACE 1040. In: Bosselaers, A., Preneel, B. (eds.) RIPE 1992. LNCS, vol. 1007, pp. 31–67. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Burr, W.: Personal Communication regarding Frequently Asked Questions on AHS Competition (March 2008)Google Scholar
  10. 10.
    Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 37–53. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Coppersmith, D., Pilpel, S., Meyer, C.H., Matyas, S.M., Hyden, M.M., Oseas, J., Brachtl, B., Schilling, M.: Data authentication using modification dectection codes based on a public one way encryption function. U.S. Patent No. 4,908,861, March 13 (1990)Google Scholar
  12. 12.
    Damgård, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full key-recovery attacks on HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Gauravaram, P.: Cryptographic Hash Functions: Cryptanalysis, Design and Applications. PhD thesis, Information Security Institute, Queensland University of Technogy (June 2007)Google Scholar
  15. 15.
    Gauravaram, P., Kelsey, J.: Linear-XOR and Additive Checksums Don’t Protect Damgård-Merkle Hashes from Generic Attacks. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 36–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Gauravaram, P., McCullagh, A., Dawson, E.: Collision Attacks on MD5 and SHA-1: Is this the “Sword of Damocles” for Electronic Commerce?. In: AusCERT R & D Stream, pp. 1–13 (2006)Google Scholar
  17. 17.
    Gauravaram, P., Okeya, K.: An Update on the Side Channel Cryptanalysis of MACs Based on Cryptographic Hash Functions. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 393–403. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Hirose, S., Park, J.H., Yun, A.: A Simple Variant of the Merkle-Damgård Scheme with a Permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 113–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    ISO/IEC 10118-2. Information Technology - Security Techniques- Hash Functions- Hash functions using an n-bit block cipher. ISO (2000)Google Scholar
  20. 20.
    Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Kelsey, J.: How Should We Evaluate Hash Submissions?. In: ECRYPT Hash Function Workshop (2007) (Accessed on 02/13/2008) , http://csrc.nist.gov/groups/ST/hash/documents/kelsey-ECRYPT2007.pdf
  22. 22.
    Kelsey, J.: How to Choose SHA-3?.In: ECRYPT Hash Function Workshop (2008) (Accessed on 07/26/2008), http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Kelsey.pdf
  23. 23.
    Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less than 2n̂ Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 474–490. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl Hash Functions. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 39–57. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Lei, D., Chao, L.: Extended Multi-Property-Preserving and ECM-construction. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 361–372. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Lemke, K., Schramm, K., Paar, C.: DPA on n-bit Sized Boolean and Arithmetic Operations and Its Application to IDEA, RC6, and the HMAC-Construction. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 205–219. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    McEvoy, R.P., Tunstall, M., Murphy, C.C., Marnane, W.P.: Differential power analysis of HMAC based on SHA-2, and countermeasures. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 317–332. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography, ch. 9, pp. 321–383. CRC Press, Boca Raton (1997)Google Scholar
  30. 30.
    Merkle, R.: One way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  31. 31.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis attacks on smartcards. In: Proceedings of the USENIX Workshop on Smartcard Technology, pp. 151–162. USENIX Association (1999)Google Scholar
  32. 32.
    Meyer, C., Schilling, M.: Secure program load with manipulation detection code. In: Proceedings of the 6th Worldwide Congress on Computer and Communications Security and Protection (SECURICOM 1988), Paris, pp. 111–130 (1988)Google Scholar
  33. 33.
    NIST. Federal Information Processing Standard (FIPS PUB 198) The Keyed-Hash Message Authentication Code (HMAC) (March 2002)Google Scholar
  34. 34.
    NIST. Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Docket No: 070911510-7512-01 (November 2007)Google Scholar
  35. 35.
    NIST. Federal Information Processing Standard (FIPS PUB 180-3) Secure Hash Standard (2007)Google Scholar
  36. 36.
    Okeya, K.: Side Channel Attacks Against HMACs Based on Block-Cipher Based Hash Functions.. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 432–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  37. 37.
    Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  38. 38.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers: A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  39. 39.
    Steinberger, J.P.: The collision intractability of MDC-2 in the ideal-cipher model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  40. 40.
    Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  41. 41.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  42. 42.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  43. 43.
    Yasuda, K.: Boosting Merkle-Damgård Hashing for Message Authentication. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 216–231. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  44. 44.
    Yasuda, K.: Multilane HMAC - Security beyond the Birthday Limit. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 18–32. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  45. 45.
    Yoshida, H., Watanabe, D., Okeya, K., Kitahara, J., Wu, H., Küçük, Ö., Preneel, B.: MAME: A Compression Function with Reduced Hardware Requirements. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 148–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Praveen Gauravaram
    • 1
  • Katsuyuki Okeya
    • 2
  1. 1.DTU MathematicsTechnical University of DenmarkDenmark
  2. 2.Systems Development LaboratoryHitachi, Ltd.Japan

Personalised recommendations