Advertisement

Abstract

More and more customers are outsourcing data storage to remote archive service providers that are responsible for properly preserving the data. As such, it has become crucial for an archive service to be capable of providing evidence to demonstrate the integrity of data for which it is responsible, from the time it receives the data until the expiration of the archival period. Pairing-based provable data integrity (PDI) scheme is proposed that enables not only the customer but also a third-party verifier to check remote data integrity. This PDI scheme is provably secure and efficient. Compared to the best-known prior art, our experiments under defined conditions show that our PDI scheme works 50 times faster in fingerprinting the data, and the resulting fingerprints are 30 times smaller in size.

Keywords

data outsourcing integrity public verifiability pairing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Amazon Simple Storage Service (Amazon S3), http://aws.amazon.com/s3
  3. 3.
    Wallace, C., Pordesch, U., Brandner, R.: Long-Term Archive Service Requirement, RFC 4810. IETF Network WG (2007)Google Scholar
  4. 4.
    Shah, M.A., Baker, M., Mogul, J.C., Swaminathan, R.: Auditing to Keep Online Storage Services Honest. In: 11th Workshop on Hot Topics in Operating Systems (HotOS-XI), Usenix (2007)Google Scholar
  5. 5.
    Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.: Provable Data Possession at Untrusted Stores. In: 14th ACM conference on Computer and Communications Security (CCS 2007), pp. 598–609. ACM Press, New York (2007), http://eprint.iacr.org/2007/202/ Google Scholar
  6. 6.
    Golle, P., Jarecki, S., Mironov, I.: Cryptographic primitives enforcing communication and storage complexity. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 120–135. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Juels, A., Kaliski, B.S.: PORs: Proofs of Retrievability for Large Files. Report 2007/243, Cryptology ePrint archive (2007)Google Scholar
  8. 8.
    Schwarz, T.S.J., Miller, E.L.: Store, Forget, and Check: Using Algebraic Signatures to Check Remotely Administered Storage. In: IEEE International Conference on Distributed Computing Systems (ICDCS 2006), p. 12. IEEE Press, Los Alamitos (2006)CrossRefGoogle Scholar
  9. 9.
    Deswarte, Y., Quisquater, J.J., Saidane, A.: Remote Integrity Checking. In: 6th IFIP TC-11 WG 11.5. In: Working Conference on Integrity and Internal Control in Information Systems (IICIS 2003), pp. 1–11. IFIP Press (2003)Google Scholar
  10. 10.
    Filho, D.L.G., Baretto, P.S.L.M.: Demonstrating Data Possession and Uncheatable Data Transfer. Report 2006/150, Cryptology ePrint Archive (2006)Google Scholar
  11. 11.
    MIRACL, Multi-precision Integer and Rational Arithmetic C Library, http://www.shamus.ie
  12. 12.
    Sebe, F., Ferrer, J.D., Balleste, A.M., Deswarte, Y., Quisquater, J.J.: Efficient Remote Data Possession Checking in Critical Information Infrastructures. IEEE Transactions on Knowledge and Data Engineering 20(8), 1034–1038 (2007)CrossRefGoogle Scholar
  13. 13.
    Yamamoto, G., Oda, S., Aoki, K.: Fast Integrity for Large Data. In: Workshop on Software Performance Enhancement for Encryption and Decryption (SPEED 2007), pp. 21–32. COSIC Press (2007)Google Scholar
  14. 14.
    Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Bellare, M., Palacio, A.: The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge Protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Abe, M., Fehr, S.: Perfect NIZK with Adaptive Soundness. Report 2006/423, Cryptology ePrint Archive (2006)Google Scholar
  17. 17.
    Dent, A.W.: The Hardness of the DHK Problem in the Generic Group Model. Report 2006/156, Cryptology ePrint Archive (2006)Google Scholar
  18. 18.
    Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponentiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  20. 20.
    Damgard, I., Pfitzmann, B.: Sequential Iteration of Interactive Arguments and an Efficient Zero-Knowledge Argument for NP. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 772–783. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Damgard, I.: On Σ-protocols, http://www.daimi.au.dk/~ivan/Sigma.pdf
  22. 22.
    Brezing, F., Weng, A.: Elliptic Curves Suitable for Pairing Based Cryptography. Report 2003/143, Cryptology ePrint Archive (2003)Google Scholar
  23. 23.
    Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and Secure Message Authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 215–233. Springer, Heidelberg (1999)Google Scholar
  24. 24.
    Kaliski, B.: TWIRL and RSA Key Size. RSA Laboratories Technical Notes and Reports, http://www.rsa.com/rsalabs/node.asp?id=2004
  25. 25.
    OpenMP, Open Multi-Processing Application Program Interface (API) Specification for Parallel Programming, http://www.openmp.org
  26. 26.
    OpenSSL, The Open Source Toolkit for SSL/TLS, http://www.openssl.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ke Zeng
    • 1
  1. 1.NEC LaboratoriesChina

Personalised recommendations