Advertisement

Composite Spatio-Temporal Co-occurrence Pattern Mining

  • Zhongnan Zhang
  • Weili Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5258)

Abstract

Spatio-temporal co-occurrence patterns (STCOPs) represent subsets of features that are located together in space and time. Mining such patterns is important for many spatio-temporal application domains. However, a co-occurrence analysis across multiple spatio-temporal datasets is computationally expensive when the dimension of the time series and number of locations in the spaces are large. In this paper, we first defined STCOPs and the STCOPs mining problem. We proposed a monotonic composite measure, which is the composition of the spatial prevalence and temporal prevalence measures. A novel and computationally efficient algorithm, Costcop  + , is presented by applying the composite measure. We proved that the proposed algorithm is correct and complete in finding STCOPs. Using a real dataset, the experiments illustrate that the algorithm is efficient.

Keywords

Time Slot Mining Algorithm Spatial Framework Candidate Pattern Participation Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Worboys, M.: GIS: A Computing Perspective. Taylor & Francis, London (1995)Google Scholar
  2. 2.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forcasting and Control, 3rd edn. Prentice-Hall, Englewood Cliffs (1994)zbMATHGoogle Scholar
  3. 3.
    Güting, R.H., Schneider, M.: Moving Object Databases. Morgan Kaufmann, San Francisco (2005)Google Scholar
  4. 4.
    Koubarakis, M., Sellis, T., Frank, A.U., Grumbach, S., Güting, R.H., Jensen, C.S., Lorentzos, N., Manolopoulos, Y., Nardelli, E., Pernici, B., Schek, H.J., Scholl, M., Theodoulidis, B., Tryfona, N.: Spatio-Temporal Databases. LNCS, vol. 2520. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  5. 5.
    Cressie, N.A.C.: Statistics for spatial data. Wiley, New York (1993)zbMATHGoogle Scholar
  6. 6.
    Gudmundsson, J., van Kreveld, M.J., Speckmann, B.: Efficient detection of motion patterns in spatio-temporal data sets. In: Pfoser, D., Cruz, I.F., Ronthaler, M. (eds.) 12th ACM International Workshop on Geographic Information Systems, ACM-GIS 2004, Washington, D.C., pp. 250–257 (2004)Google Scholar
  7. 7.
    Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Celik, M., Shekhar, S., Rogers, J.P., Shine, J.A., Yoo, J.S.: Mixed-drove spatio-temporal co-occurence pattern mining: A summary of results. In: ICDM 2006, pp. 119–128. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  9. 9.
    Celik, M., Shekhar, S., Rogers, J.P., Shine, J.A.: Sustained emerging spatio-temporal co-occurrence pattern mining: A summary of results. In: Proceedings of the 18th International Conference on Tools with Artificial Intelligence (ICTAI 2006), pp. 106–115. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  10. 10.
    Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: A summary of results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 236–256. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Huang, Y., Shekhar, S., Xiong, H.: Discovering colocation patterns from spatial data sets: A general approach. IEEE Transactions on Knowledge and Data Engineering 16(12), 1472–1485 (2004)CrossRefGoogle Scholar
  12. 12.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)zbMATHGoogle Scholar
  13. 13.
    Zhang, P., Huang, Y., Shekhar, S., Kumar, V.: Correlation analysis of spatial time series datasets: A filter-and-refine approach. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS (LNAI), vol. 2637, pp. 532–544. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Yoo, J.S., Shekhar, S.: A joinless approach for mining spatial colocation patterns. IEEE Transactions on Knowledge and Data Engineering 18(10), 1323–1337 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Zhongnan Zhang
    • 1
  • Weili Wu
    • 1
  1. 1.Department of Computer ScienceThe University of Texas at DallasRichardsonUSA

Personalised recommendations