Advertisement

Ant Colony Optimization-Based Location-Aware Routing for Wireless Sensor Networks

  • Xiaoming Wang
  • Qiaoliang Li
  • Naixue Xiong
  • Yi Pan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5258)

Abstract

The routing for Wireless Sensor Networks (WSNs) is a key and hard problem, and it is a research topic in the field of WSN applications. Based on Ant Colony Optimization (ACO), this paper proposes a novel adaptive intelligent routing scheme for WSNs. Following the proposed scheme, a high performance routing algorithm for WSNs is designed. The proposed routing scheme is very different from the existing ACO based routing schema for WSNs. On one hand, in the proposed scheme, the search range for an ant to select its next-hop node is limited to a subset of the set of the neighbors of the current node. On the other hand, by fusing the residual energy and the global and local location information of nodes, the new probability transition rules for an ant to select its next-hop node are defined. Compared with other ACO based routing algorithms for WSNs, the proposed routing algorithm has a better network performance on aspects of energy consumption, energy efficiency, and packet delivery latency.

Keywords

WSN routing ACO pheromone transition probability simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankkarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Journal of Computer Networks 38(4), 393–424 (2002)CrossRefGoogle Scholar
  2. 2.
    Al-karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a survey. IEEE Wireless Communications 11(6), 6–28 (2004)CrossRefGoogle Scholar
  3. 3.
    Iyengar, S.S., Wu, H.-C., Balakrishnan, N., Changand, S.Y.: Biologically inspired cooperative routing for wireless mobile sensor networks. IEEE Systems Journal 1(1), 29–37 (2007)CrossRefGoogle Scholar
  4. 4.
    Aghaei, R.G., Rahman, M.A., Gueaieb, W., Saddik, A.E.: Ant colony-based reinforcement learning algorithm for routing in wireless sensor networks. In: 2007 IEEE Instrumentation and Measurement Technology, pp. 1–6. IEEE Press, New York (2007)Google Scholar
  5. 5.
    Dorigo, M., et al.: Ant system optimation: a colony of cooperating agents. IEEE Transactions on System, Man, Cybernetics Part B. 26(1), 29–41 (1996)CrossRefGoogle Scholar
  6. 6.
    Dorigo, M., Gambadella, L.M.: Ant colony system: a cooperative learning approach to the tranveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  7. 7.
    Zhang, Y., Kuhn, L.D., Fromherz, M.P.J.: Improvements on ant routing for sensor networks. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 154–165. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Shen, C., Jaikaeo, C.: Ad hoc multicast routing algorithm with swarm intelligence. Journal of Mobile Netwotks and Applications 10(1,2), 47–59 (2005)CrossRefGoogle Scholar
  9. 9.
    Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks. Journal of Ad Hoc Networks 3(3), 325–349 (2005)CrossRefGoogle Scholar
  10. 10.
    Caro, G.D., Dorigo, M.: AntNet: distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)zbMATHGoogle Scholar
  11. 11.
    Dorigo, M., et al.: Special section on ant colony optimization. IEEE Transactions on Evolutionary Computation 6(4), 317–319 (2002)CrossRefGoogle Scholar
  12. 12.
    Chakrabarty, K., Iyengar, S.S.: Scalable infrastructure for distributed sensor networks. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Stuetzle, T., Dorigo, M.: A short convergence proof for a class of ACO algorithms. IEEE Transactions on Evolutionary Computation 6(4), 358–365 (2002)CrossRefGoogle Scholar
  14. 14.
    Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: Ant-based load balancing in telecommunications networks. Adaptive Behavior 5(2), 169–207 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Xiaoming Wang
    • 1
    • 3
  • Qiaoliang Li
    • 2
    • 3
  • Naixue Xiong
    • 3
  • Yi Pan
    • 3
  1. 1.School of Computer ScienceShaanxi Normal UniversityXi’anChina
  2. 2.School of Computer Science and CommunicationHunan UniversityChangshaChina
  3. 3.Department of Computer ScienceGeorgia State UniversityAtlantaUSA

Personalised recommendations