Anytime Query Answering in RDF through Evolutionary Algorithms

  • Eyal Oren
  • Christophe Guéret
  • Stefan Schlobach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5318)


We present a technique for answering queries over RDF data through an evolutionary search algorithm, using fingerprinting and Bloom filters for rapid approximate evaluation of generated solutions. Our evolutionary approach has several advantages compared to traditional database-style query answering. First, the result quality increases monotonically and converges with each evolution, offering “anytime” behaviour with arbitrary trade-off between computation time and query results; in addition, the level of approximation can be tuned by varying the size of the Bloom filters. Secondly, through Bloom filter compression we can fit large graphs in main memory, reducing the need for disk I/O during query evaluation. Finally, since the individuals evolve independently, parallel execution is straightforward. We present our prototype that evaluates basic SPARQL queries over arbitrary RDF graphs and show initial results over large datasets.


Evolutionary Algorithm Type Opus Bloom Filter SPARQL Query Ground Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable semantic web data management using vertical partitioning. In: Proceedings of the International Conference on Very Large Data Bases (VLDB), pp. 411–422 (2007)Google Scholar
  2. 2.
    Aleman-Meza, B., Hakimpour, F., Arpinar, I., Sheth, A.: SwetoDblp ontology of computer science publications. Journal of Web Semantics 5(3), 151–155 (2007)CrossRefGoogle Scholar
  3. 3.
    Beckett, D.: The design and implementation of the Redland RDF application framework. Computer Networks 39(5), 577–588 (2002)CrossRefGoogle Scholar
  4. 4.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)CrossRefzbMATHGoogle Scholar
  5. 5.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for storing and querying RDF and RDF Schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools: Principles and case-study. International Journal on Artificial Intelligence Tools 15, 173–194 (2006)CrossRefGoogle Scholar
  8. 8.
    Guéret, C., Oren, E., Schlobach, S., Schut, M.: An evolutionary perspective on approximate RDF query answering. In: Proceedings of the International Conference on Scalable Uncertainty Management (2008)Google Scholar
  9. 9.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Journal of Web Semantics 3, 158–182 (2005)CrossRefGoogle Scholar
  10. 10.
    Harth, A., Decker, S.: Optimized index structures for querying RDF from the web. In: Proceedings of the Latin-American Web Congress (LA-Web), pp. 71–80 (2005)Google Scholar
  11. 11.
    Kiefer, C., Bernstein, A., Stocker, M.: The fundamentals of iSPARQL: A virtual triple approach for similarity-based semantic web tasks. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 295–309. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Muñoz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., et al.: Access path selection in a relational database management system. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (1979)Google Scholar
  15. 15.
    Shvila, M., Jelinek, I.: Benchmarking RDF production tools. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 700–709. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Sintek, M., Kiesel, M.: RDFBroker: A signature-based high-performance RDF store. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 363–377. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Stuckenschmidt, H., van Harmelen, F.: Approximating terminological queries. In: Andreasen, T., Motro, A., Christiansen, H., Larsen, H.L. (eds.) FQAS 2002. LNCS (LNAI), vol. 2522, pp. 329–343. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF storage and retrieval in Jena2. In: Proceedings of the International Workshop on Semantic Web and Databases (SWDB) (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eyal Oren
    • 1
  • Christophe Guéret
    • 1
  • Stefan Schlobach
    • 1
  1. 1.Vrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations