Semantic Modelling of User Interests Based on Cross-Folksonomy Analysis

  • Martin Szomszor
  • Harith Alani
  • Ivan Cantador
  • Kieron O’Hara
  • Nigel Shadbolt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5318)


The continued increase in Web usage, in particular participation in folksonomies, reveals a trend towards a more dynamic and interactive Web where individuals can organise and share resources. Tagging has emerged as the de-facto standard for the organisation of such resources, providing a versatile and reactive knowledge management mechanism that users find easy to use and understand. It is common nowadays for users to have multiple profiles in various folksonomies, thus distributing their tagging activities. In this paper, we present a method for the automatic consolidation of user profiles across two popular social networking sites, and subsequent semantic modelling of their interests utilising Wikipedia as a multi-domain model. We evaluate how much can be learned from such sites, and in which domains the knowledge acquired is focussed. Results show that far richer interest profiles can be generated for users when multiple tag-clouds are combined.


Social Networking Site Semantic Modelling User Interest Category List Compound Noun 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ames, M., Naaman, M.: Why we tag: Motivations for annotation in mobile and online media. In: Proc. of Computer and Human Interaction (CHI), San Jose, CA (2007)Google Scholar
  2. 2.
    Begelman, G., Keller, P., Smadja, F.: Automated Tag Clustering: Improving search and exploration in the tag space. In: Proc. 17th Int. World Wide Web Conf., Edinburgh, UK (2006)Google Scholar
  3. 3.
    Bojars, U., Breslin, J.G., Finn, A., Decker, S.: Using the semantic web for linking and reusing data across web2.0 communities. Web Semantics: Science, Services and Agents on the World Wide Web 6(1), 21–28 (2008)CrossRefGoogle Scholar
  4. 4.
    Cattuto, C.: Semiotic dynamics in online social communities. The European Physical Journal C - Particles and Fields 46, 33–37 (2006)Google Scholar
  5. 5.
    Choudhury, M.D., Sundaram, H., John, A., Seligmann, D.: Can Blog Communication Dynamics be correlated with Stock Market Activity? In: Proc. Int. Conf. Hypertext (HT 2008), Pittsburgh, PA, USA (2008)Google Scholar
  6. 6.
    Demartini, G.: Finding experts using wikipedia. In: Proc. ExpertFinder Workshop, at ISWC, Busan, Korea (2007)Google Scholar
  7. 7.
    Diederich, J., Iofciu, T.: Finding Communities of Practice from User Profiles Based on Folksonomies. In: Proc. Workshop on Building Technology Enhanced Learning solutions for Communities of Practice, EC-TEL, Crete, Greece (2006)Google Scholar
  8. 8.
    Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. Journal of Information Science 32, 198–208 (2006)CrossRefGoogle Scholar
  9. 9.
    Gruber, T.: Collective Knowledge Systems: Where the Social Web meets the Semantic Web. Journal of Web Semantics 6(1) (2008)Google Scholar
  10. 10.
    Guy, M., Tonkin, E.: Tidying up tags? D-Lib Magazine 12(1) (2006)Google Scholar
  11. 11.
    Hayes, C., Avesani, P., Veeramachaneni, S.: An analysis of the use of tags in a log recommender system. In: Int. Joint Conf. Artificial Intelligence (IJCAI), Hyderabad, India (2007)Google Scholar
  12. 12.
    Li, X., Guo, L., Zhao, Y.E.: Tag-based social interest discovery. In: Proc. 19th Int. World Wide Web Conf. (WWW), Beijing, China (2008)Google Scholar
  13. 13.
    Yeung, C.M.A., Gibbins, N., Shadbolt, N.: Tag Meaning Disambiguation through Analysis of Tripartite Structure of Folksonomies. In: Proc. Workshop on Collective Intelligence on Semantic Web (CISW), IEEE/WIC/ACM, Los Alamitos, CA, USA (2007)Google Scholar
  14. 14.
    Marlow, C., Naaman, M., Boyd, D., Davis, M.: Ht06, tagging paper, taxonomy, flickr, academic article, to read. In: Proc. Int. Conf. Hypertext (HT 2006), Odense, Denmark (2006)Google Scholar
  15. 15.
    Mathes, A.: Folksonomies - cooperative classification and communication through shared metadata. Computer Mediated Communication - LIS590CMC (December 2004)Google Scholar
  16. 16.
    McCarthy, C.: Myspace announces ’data availability’ project with yahoo, ebay, photobucket, twitter. CNET (2008),
  17. 17.
    Mori, J., Matsuo, Y., Ishizuka, M., Faltings, B.: Keyword Extraction from the Web for FOAF Metadata. In: Workshop on Friend of a Friend, Social Networking and the Semantic Web, Galway, Ireland (2004)Google Scholar
  18. 18.
    Morin, D.: Announcing facebook connect. facebook developers (2008),
  19. 19.
    Ofcom. Social networking: A quantitative and qualitative research report into attitudes, behaviours, and use (2008),
  20. 20.
    Passant, A., Laublet, P.: Meaning of A Tag: A Collaborative Approach to Bridge the Gap Between Tagging and Linked Data. In: Workshop on Linked Data on the Web (LDOW), Int. Word Wide Web Conference, Beijing, China (2008)Google Scholar
  21. 21.
    Silver, D.: Smart Start-ups: How to Make a Fortune from Starting Online Communities. John Wiley and Sons, Inc., Chichester (2007)Google Scholar
  22. 22.
    Singla, P., Richardson, M.: Yes, There is a Correlation - From Social Networks to Personal Behavior on the Web. In: Proc. Int. World Wide Web Conf., Beijing, China (2008)Google Scholar
  23. 23.
    Specia, L., Motta, E.: Integrating folksonomies with the semantic web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519. Springer, Heidelberg (2007)Google Scholar
  24. 24.
    Szomszor, M., Cantador, I., Alani, H.: Correlating user profiles from multiple folksonomies. In: Proc. Int. Conf. Hypertext (HT 2008), Pittsburgh, PA, USA (2008)Google Scholar
  25. 25.
    Tanaka, J.W., Taylor, M.: Object categories and expertise: Is the basic level in the eye of the beholder? Cognitve Psychology 23, 457–482 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Martin Szomszor
    • 1
  • Harith Alani
    • 1
  • Ivan Cantador
    • 2
  • Kieron O’Hara
    • 1
  • Nigel Shadbolt
    • 1
  1. 1.Intelligence, Agents, Multimedia School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK
  2. 2.Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain

Personalised recommendations