Advertisement

Scalable Grounded Conjunctive Query Evaluation over Large and Expressive Knowledge Bases

  • Julian Dolby
  • Achille Fokoue
  • Aditya Kalyanpur
  • Li Ma
  • Edith Schonberg
  • Kavitha Srinivas
  • Xingzhi Sun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5318)

Abstract

Grounded conjunctive query answering over OWL-DL ontologies is intractable in the worst case, but we present novel techniques which allow for efficient querying of large expressive knowledge bases in secondary storage. In particular, we show that we can effectively answer grounded conjunctive queries without building a full completion forest for a large Abox (unlike state of the art tableau reasoners). Instead we rely on the completion forest of a dramatically reduced summary of the Abox. We demonstrate the effectiveness of this approach in Aboxes with up to 45 million assertions.

Keywords

Root Node Description Logic Query Term Conjunctive Query Membership Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: Scalable semantic retrieval through summarization and refinement. In: Proc. of the 22nd Conf. on Artificial Intelligence, AAAI 2007 (2007)Google Scholar
  2. 2.
    Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.: Scalable conjunctive query evaluation: Technical report (2008), http://domino.research.ibm.com/comm/research_projects.nsf/pages/iaa.index.html/$FILE/techReportCQ.pdf
  3. 3.
    Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: The summary abox: Cutting ontologies down to size. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 136–145. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic \(\textsc{SHIQ}^*\). In: Proc. of 17th Int.Conf. on Automated Deduction, pp. 482–496 (2000)Google Scholar
  5. 5.
    Sirin, E., Parsia, B.: Optimizations for answering conjunctive abox queries: First results. In: Proc. of the Description Logics Workshop, DL 2006 (2006)Google Scholar
  6. 6.
    Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y.: Towards a complete owl ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 124–139. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Hustadt, U., Motik, B., Sattler, U.: Reducing shiq description logic to disjunctive datalog programs. In: Proc. of 9th Intl. Conf. on Knowledge Representation and Reasoning (KR 2004), pp. 152–162 (2004)Google Scholar
  8. 8.
    Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Description Logics (2004)Google Scholar
  9. 9.
    Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the description logic shiq. In: IJCAI, pp. 399–404 (2007)Google Scholar
  10. 10.
    Haarslev, V., Moller, R.: Racer system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Julian Dolby
    • 1
  • Achille Fokoue
    • 1
  • Aditya Kalyanpur
    • 1
  • Li Ma
    • 2
  • Edith Schonberg
    • 1
  • Kavitha Srinivas
    • 1
  • Xingzhi Sun
    • 2
  1. 1.IBM Watson Research CenterYorktown HeightsUSA
  2. 2.IBM China Research LabBeijingChina

Personalised recommendations