Using Semantic Distances for Reasoning with Inconsistent Ontologies

  • Zhisheng Huang
  • Frank van Harmelen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5318)


Re-using and combining multiple ontologies on the Web is bound to lead to inconsistencies between the combined vocabularies. Even many of the ontologies that are in use today turn out to be inconsistent once some of their implicit knowledge is made explicit. However, robust and efficient methods to deal with inconsistencies are lacking from current Semantic Web reasoning systems, which are typically based on classical logic. In earlier papers, we have proposed the use of syntactic relevance functions as a method for reasoning with inconsistent ontologies. In this paper, we extend that work to the use of semantic distances. We show how Google distances can be used to develop semantic relevance functions to reason with inconsistent ontologies. In essence we are using the implicit knowledge hidden in the Web for explicit reasoning purposes. We have implemented this approach as part of the PION reasoning system. We report on experiments with several realistic ontologies. The test results show that a mixed syntactic/semantic approach can significantly improve reasoning performance over the purely syntactic approach. Furthermore, our methods allow to trade-off computational cost for inferential completeness. Our experiment shows that we only have to give up a little quality to obtain a high performance gain.


Selection Function Semantic Distance Concept Pair Syntactic Approach Consistent Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Belnap, N.: A useful four-valued logic. In: Modern Uses of Multiple-Valued Logic, pp. 8–37. Reidel, Dordrecht (1977)Google Scholar
  2. 2.
    Budanitsky, A., Hirst, G.: Semantic distance in wordnet: An experimental, application-oriented evaluation of five measures. In: Workshop on WordNet, Pittsburgh, PA. (2001)Google Scholar
  3. 3.
    Chopra, S., Parikh, R., Wassermann, R.: Approximate belief revision- prelimininary report. Journal of IGPL (2000)Google Scholar
  4. 4.
    Cilibrasi, R., Vitany, P.: The Google similarity distance. IEEE/ACM Transactions on Knowledge and Data Engineering 19(3), 370–383 (2007)CrossRefGoogle Scholar
  5. 5.
    Cilibrasi, R., Vitanyi, P.: Automatic meaning discovery using Google. Technical report, Centre for Mathematics and Computer Science, CWI (2004)Google Scholar
  6. 6.
    d’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., Motta, E.: Characterizing knowledge on the semantic web with watson. In: 5th International EON Workshop at ISWC 2007 (2007)Google Scholar
  7. 7.
    Gligorov, R., Aleksovski, Z., ten Kate, W., van Harmelen, F.: Using Google distance to weight approximate ontology matches. In: Proceedings of WWW 2007 (2007)Google Scholar
  8. 8.
    Haase, P.: Semantic Technologies for Distributed Information Systems. PhD thesis at the Universität Karlsruhe (2006)Google Scholar
  9. 9.
    Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for handling inconsistency in changing ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Hameed, A., Preece, A., Sleeman, D.: Ontology reconciliation. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies in Information Systems, pp. 231–250. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Huang, Z., van Harmelen, F.: Reasoning with inconsistent ontologies: Evaluation. Project Report D3.4.2, SEKT (2006)Google Scholar
  12. 12.
    Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: Proceedings of IJCAI 2005 (2005)Google Scholar
  13. 13.
    Huang, Z., van Harmelen, F., ten Teije, A., Groot, P., Visser, C.: Reasoning with inconsistent ontologies: a general framework. Project Report D3.4.1, SEKT (2004)Google Scholar
  14. 14.
    Lin, D.: An information-theoretic definition of similarity. In: Proceedings of International Conference on Machine Learning, Madison, Wisconsin (July 1998)Google Scholar
  15. 15.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang, H., Wroe, C.: Owl pizzas: Practical experience of teaching owl-dl - common errors and common patterns. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 63–81. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Schlobach, S.: Debugging and semantic clarification by pinpointing. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 226–240. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proceedings of IJCAI 2003 (2003)Google Scholar
  19. 19.
    Volker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Zhisheng Huang
    • 1
  • Frank van Harmelen
    • 1
  1. 1.Computer Science DepartmentVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations