Skip to main content

Nanobiotechnology: Soft Lithography

  • Chapter
  • First Online:
Biosilica in Evolution, Morphogenesis, and Nanobiotechnology

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 47))

Abstract

An entirely new scientific and technological area has been born from the combination of nanotechnology and biology: nanobiotechnology. Such a field is primed especially by the strong potential synergy enabled by the integration of technologies, protocols, and investigation methods, since, while biomolecules represent functional nanosystems interesting for nanotechnology, micro- and nano-devices can be very useful instruments for studying biological materials. In particular, the research of new approaches for manipulating matter and fabricating structures with micrometre- and sub-micrometre resolution has determined the development of soft lithography, a new set of non-photolithographic patterning techniques applied to the realization of selective proteins and cells attachment, microfluidic circuits for protein and DNA chips, and 3D scaffolds for tissue engineering. Today, soft lithographies have become an asset of nanobiotechnology. This Chapter examines the biological applications of various soft lithographic techniques, with particular attention to the main general features of soft lithography and of materials commonly employed with these methods. We present approaches particularly suitable for biological materials, such as microcontact printing (μCP) and microfluidic lithography, and some key micro- and nanobiotechnology applications, such as the patterning of protein and DNA microarrays and the realization of microfluidic-based analytical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auroux P-A, IossifIDis D, Reyes D R, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74:2637–2652

    CAS  PubMed  Google Scholar 

  • Beh W S, Kim I T, Qin D, Xia Y, WhitesIDes G M (1999) Formation of patterned microstructures of conducting polymers by Soft Lithography, and applications in microelectronic device fabrication. Adv Mater 11:1038–1041

    CAS  Google Scholar 

  • Bernard A, Delamarche E, SchmID H, Michel B, Bosshard H R, Biebuyck H (1998) Printing patterns of proteins. Langmuir 14:2225–2229

    CAS  Google Scholar 

  • Bernard A, Renault J P, Michel B, Bosshard H R, Delamarche E (2000) Microcontact Printing of proteins. Adv Mater 12:1067–1070

    CAS  Google Scholar 

  • Bernard A, Michel B, Delamarche E (2001) Micromosaic immunoassays. Anal Chem 73:8–12

    CAS  PubMed  Google Scholar 

  • Biasco A, Pisignano D, Krebs B, Pompa P P, Persano L, Cingolani R, Rinaldi R (2005) Conformation of microcontact-printed proteins by atomic force microscopy molecular sizing. Langmuir 21:5154–5158

    CAS  PubMed  Google Scholar 

  • Boxshall K, Wu M-H, Cui Z, Cui Z, Watts J F, Baker M A (2006) Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) micro-bioreactor. Surf Interface Anal 38:198–201

    CAS  Google Scholar 

  • Brody J P, Yager P, Goldstein R E, Austin R H (1996) Biotechnology at low Reynolds numbers. Biophys J 71:3430–3441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chai J, Li B, Kwok D Y (2005) Selective surface modification and patterning by a micro-plasma discharge. Appl Phys Lett 86:034107-1-3

    Google Scholar 

  • Chen J, Weimer W A (2002) Room-temperature assembly of directional carbon nanotube strings. J Am Chem Soc 124:758–759

    CAS  PubMed  Google Scholar 

  • Choi K M, Rogers J A (2003) A potocurable ply(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J Am Chem Soc 125:4060–4061

    CAS  PubMed  Google Scholar 

  • Chou S Y, Krauss P R, Renstrom P J (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67:3114–3116

    CAS  Google Scholar 

  • Chou S Y, Krauss P R, Renstrom P J (1996) Imprint lithography with 25-nanometer resolution. Science 272:85–87

    CAS  Google Scholar 

  • Delamarche E, Bernard A, SchmID H, Michel B, Biebuyck H (1997) Patterned delivery of immunoglobulins to surfaces using microfluIDic networks. Science 276:779–781

    CAS  PubMed  Google Scholar 

  • Delamarche E, Bernard A, SchmID H, Bietsch A, Michel B, Biebuyck, H A (1998) MicrofluIDic networks for chemical patterning of substrates: design and application to bioassays. J Am Chem Soc 120:500–508

    CAS  Google Scholar 

  • deMello A J (2003) DNA amplification moves on. Nature 422:28–29

    Google Scholar 

  • Duffy D C, McDonald J C, Schueller J A, WhitesIDes G M (1998) RapID prototyping of microflu-IDic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    CAS  PubMed  Google Scholar 

  • Du Roure O, Saez A, Buguin A, Austin R H, Chavrier P, Siberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci USA 102:2390–2395

    CAS  Google Scholar 

  • Hatch A, Kamholz A E, Hawkins K R, Munson M S, Schilling E A, Weigl B H, Yager P (2001) A rapID diffusion immunoassay in a T-sensor. Nat Biotechnol 19:461–465

    CAS  PubMed  Google Scholar 

  • Hsia K J, Huang Y, Menard E, Park J-U, Zhou W, Rogers J, Fulton J M (2005) Collapse of stamps for soft lithography due to interfacial adhesion. Appl Phys Lett 86:154106-1-3

    Google Scholar 

  • Hu S, Ren X, Bachman M, Sims C E, Li G P, Allbritton N L (2002) Surface modification of poly(dimethylsiloxane) microfluIDic devices by ultraviolet polymer grafting. Anal Chem 74: 4117–4123

    CAS  PubMed  Google Scholar 

  • Jacobson S C, Ramsey J M (1996) Integrated microdevice for DNA restriction fragment analysis. Anal Chem 68:720–723

    CAS  PubMed  Google Scholar 

  • James C D, Davis R C, Kam L, Craighead H G, Isaacson M, Turner J N, Shain W (1998) Patterned protein layers on solID substrates by thin stamp microcontact printing. Langmuir 14:741–744

    CAS  Google Scholar 

  • Kamholz A E, Weigl B H, Finlayson B A, Yager P (1999) Quantitative analysis of molecular interaction in a microfluIDic channel: the T-sensor. Anal Chem 71:5340–5347

    CAS  PubMed  Google Scholar 

  • Kane R S, Takayama S, Ostuni E, Ingber D E, WhitesIDes G M (1999) Patterning proteins and cells using soft lithography. Biomater 20:2363–2376

    CAS  Google Scholar 

  • Kim E, Xia Y, WhitesIDes G M (1995) Polymer microstructures formed by moulding in capillaries. Nature 376:581–584

    CAS  Google Scholar 

  • Kim E, Xia Y, WhitesIDes G M (1996) Micromolding in capillaries: applications in materials science. J Am Chem Soc 118:5722–5731

    CAS  Google Scholar 

  • Kim E, Xia Y, Zhao X-M, WhitesIDes G M (1997) Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers. Adv Mater 9:651–654

    CAS  Google Scholar 

  • Kopp M U, de Mello A J, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048

    CAS  PubMed  Google Scholar 

  • Kumar A, WhitesIDes G M (1993) Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching. Appl Phys Lett 63:2002–2004

    CAS  Google Scholar 

  • Lange S A, Benes V, Kern D P, Holrber J K H, Bernard A (2004) Microcontact printing of DNA molecules. Anal Chem 76:1641–1647

    CAS  PubMed  Google Scholar 

  • Makamba H, Kim J H, Lim K, Park N, Hahn J H (2003) Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24:3607–3619

    CAS  PubMed  Google Scholar 

  • Merkel T C, Bondar V I, Nagai K, Freeman B D, Pinnau I (2000) Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci Part B: Polym. Phys 38:415–434

    CAS  Google Scholar 

  • Morozov V N, Morozova T (1999) Electrospray deposition as a method for mass fabrication of mono- and multicomponent microarrays of biological and biologically active substances. Anal Chem 71:3110–3117

    CAS  PubMed  Google Scholar 

  • Mrksich M, WhitesIDes G M (1995) Patterning self-assembled monolayers using microcontact printing: a new technology for biosensors? Trends Biotechnol 13:228–235

    CAS  Google Scholar 

  • Mutzel M, Tandler S, Haubrich D, Meschede D, Peithmann K, Flaspohler M, Buse K (2002) Atom lithography with a holographic light mask. Phys Rev Lett 88:083601-1-4

    Google Scholar 

  • Ouyang M, Yuan C, Muisener R J, Boulares A, Koberstein J T (2000) Conversion of some siloxane polymers to silicon oxIDe by UV/ozone photochemical processes. Chem Mater 12:1591–1596

    CAS  Google Scholar 

  • Owen M J, Smith P J (1994) Plasma treatment of polydimethylsiloxane. Adhesion Sci Technol 8:1063–1075

    CAS  Google Scholar 

  • Patel N, Padera R, Sanders G H W, Cannizzaro S M, Davies M C, Langer R, Roberts C J, Tendler S J B, Williams P M, Shakesheff K M (1998) Spatially controlled cell engineering on biodegradable polymer surfaces. 112:1447–1454

    Google Scholar 

  • Pennathur S, Santiago J G (2005) Electrokinetic transport in nanochannels. 1.Theory Anal Chem 77:6772–6781

    CAS  PubMed  Google Scholar 

  • Roda A, Guardigli M, Russo C, Pasini P, Baraldini, M (2000) Protein microdeposition using a conventional ink-jet printer. BioTechniques 28:492–496

    CAS  PubMed  Google Scholar 

  • Ross C B, Sun L, Crooks R M (1993) Scanning probe lithography. 1. Scanning tunneling microscope induced lithography of self-assembled n-alkanethiol monolayer resists. Langmuir 9: 632–636

    CAS  Google Scholar 

  • Rozkiewicz D I, Kraan Y, Werten M W T, De Wolf F A, Subramaniam V, Jan Ravoo B, Reinhoudt D N (2006) Covalent Microcontact Printing of proteins for cell patterning. Chem Eur J 12:6290–6297

    CAS  PubMed  Google Scholar 

  • Schilling E A, Kamholz A E, Yager P (2002) Cell lysis and protein extraction in a microfluIDic device with detection by a fluorogenic enzyme assay. Anal Chem 74:1798–1804

    CAS  PubMed  Google Scholar 

  • SchmID H, Michel B (2000) Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33:3042–3049

    CAS  Google Scholar 

  • Smith E A, Wanat M J, Cheng Y, Barreira S V P, Frutos A G, Corn R M (2001) Formation, spectroscopic characterization, and application of sulfhydryl-terminated alkanethiol monolayers for the chemical attachment of DNA onto gold surfaces. Langmuir 17:2502–2507

    CAS  Google Scholar 

  • Sgarbi N, Pisignano D, Di Benedetto F, Gigli G, Cingolani R, Rinaldi R (2004) Self-assembled extracellular matrix protein networks by microcontact printing. Biomaterials 25:1349–1353

    CAS  PubMed  Google Scholar 

  • Takayama S, McDonald J C, Ostini E, Liang M N, Kenis P J A, Ismagilov R F, WhitesIDes G M (1999) Patterning cells and their environments using multiple laminar fluID flows in capillary networks. Proc Natl Acad Sci USA 96:5545–5548

    CAS  PubMed  Google Scholar 

  • Vasilets V N, Nakamura K, Uyama Y, Ogata S, Ikada Y (1998) Improvement of the micro-wear resistance of silicone by vacuum ultraviolet irradiation. Polymer 39:2875–2881

    CAS  Google Scholar 

  • Wang Y, Lai H-H, Bachman M, Sims C E, Li G P, Allbritton N L (2005) Covalent micropatterning of poly(dimethylsiloxane) by photografting through a mask. Anal Chem 77:7539–7546

    CAS  PubMed  Google Scholar 

  • WhitesIDes G M (2006) The origins and the future of microfluIDics. Nature 442:368–373

    CAS  PubMed  Google Scholar 

  • Xia Y, WhitesIDes G M (1998) Soft lithography. Angew Chem Int Ed Engl 37:550–575

    CAS  PubMed  Google Scholar 

  • Xia Y, Kim E, Zhao X-M, Rogers J A, Prentiss M, WhitesIDes G M (1996) Complex optical surfaces formed by replica molding against elastomeric masters. Science 273:347–349

    CAS  PubMed  Google Scholar 

  • Yang P, Wirnsberger G, Huang H C, Corsero S R, McGehee M D, Scott B, Deng T, WhitesIDes G M, Chmelka B F, Buratto S K, Stucky G D (2000) Mirrorless lasing from mesostructured waveguIDes patterned by Soft Lithography. Science 287:46

    Google Scholar 

  • Zhao X-M, Xia Y, Whitesides G M (1996) Fabrication of three-dimensional micro-structures: microtransfer molding. Adv Mater 8:837–840

    CAS  Google Scholar 

  • Zhou W, Huang Y, Menard E, Aluru N R, Rogers A, Alleyne A G (2005) Mechanism for stamp collapse in soft lithography. Appl Phys Lett 87:251925-1-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mele, E., Pisignano, D. (2009). Nanobiotechnology: Soft Lithography. In: Müller, W.E.G., Grachev, M.A. (eds) Biosilica in Evolution, Morphogenesis, and Nanobiotechnology. Progress in Molecular and Subcellular Biology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88552-8_15

Download citation

Publish with us

Policies and ethics