Skip to main content

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 1))

  • 1069 Accesses

Abstract

This chapter describes progress towards the building of a biologically inspired cognitive artifact. It first discusses the implementation of individual perception-action links based on insect capabilities; then how these may be combined in more complex, multimodal control. We describe several neural network implementions of insect based methods of navigation. We present the preliminary results of modelling associative learning capabilities based on the insect mushroom bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amrein, H.: Pheromone perception and behavior in Drosophila. Current Opinion in Neurobiology 14, 435–442 (2004)

    Article  Google Scholar 

  2. Arbas, E., Willis, M., Kanzaki, R.: Organization of goal-oriented locomotion: pheromone-modulated flight behavior of moths. In: Beer, R., Ritzmann, R., McKenna, I. (eds.) Biological neural networks in invertebrate neuroethology and robotics. Academic Press, Cambridge (1993)

    Google Scholar 

  3. Benhamou, S.: Path integration by swimming rats. Animal Behavior 54, 321–327 (1997)

    Article  Google Scholar 

  4. Bisch-Knaden, S., Wehner, R.: Local vectors in desert ants: context-dependent landmark learning during outbound and homebound runs. Journal of Comparative Physiology 189, 181–187 (2003)

    Google Scholar 

  5. Böhm, H., Schildberger, K., Huber, F.: Visual and acoustic course control in the cricket Gryllus-bimaculatus. Journal of Experimental Biology 159, 235–248 (1991)

    Google Scholar 

  6. Borst, A., Haag, J.: Neural networks in the cockpit of the fly. Journal of Comparative Physiology A 188, 419–437 (2002)

    Article  Google Scholar 

  7. Burdohan, J., Comer, C.: Cellular organisation of an antennal mechanosensory pathway in the cockroach, Periplaneta americana. Journal of Neuroscience 16, 5830–5843 (1996)

    Google Scholar 

  8. Burgess, N., Donnett, J., O’Keefe, J.: Using a mobile robot to test a model of the rat hippocampus. Connection Science 10, 291–300 (1998)

    Article  Google Scholar 

  9. Bush, S., Schul, J.: Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons. Journal of Comparative Physiology 192, 113–121 (2006)

    Article  Google Scholar 

  10. Camhi, J., Johnson, E.: High-frequency steering maneuvres mediated by tactile cues: antennal wall-following in the cockroach. Journal of Experimental Biology 202, 631–643 (1999)

    Google Scholar 

  11. Cartwright, B., Collett, T.: Landmark learning in bees. Journal of Comparative Physiology A 151, 521–543 (1983)

    Article  Google Scholar 

  12. Chapman, T.: Morphological and neural modelling of the orthopteran escape response. Ph.D. thesis, University of Stirling (2001)

    Google Scholar 

  13. Chapman, T., Webb, B.: A model of antennal wall-following and escape in the cockroach. Journal of Comparative Physiology A 192, 949–969 (2006)

    Article  Google Scholar 

  14. Collett, M., Collett, T., Srinivasan, M.: Insect navigation: Measuring travel distance across ground and through air. Current Biology 16, R887–R890 (2006)

    Article  Google Scholar 

  15. Collett, T., Collett, M.: Path integration in insects. Current Opinion in Neurobiology 10, 757–762 (2000)

    Article  Google Scholar 

  16. Comer, C., Robertson, R.: Identified nerve cells and insect behavior. Progress in Neurobiology 63, 409–439 (2001)

    Article  Google Scholar 

  17. Cruse, H., Kindermann, T., Schumm, M., Dean, J., Schmitz, J.: Walknet-a biologically inspired network to control six-legged walking. Neural networks 11, 1435–1447 (1998)

    Article  Google Scholar 

  18. Cruse, H., Schmitz, J., Braun, U., Schweins, A.: Control of body height in a stick insect walking on a treadwheel. The Journal of Experimental Biology 181, 141–155 (1993)

    Google Scholar 

  19. Dan, Y., Poo, M.: Spike timing dependent plasticity of neural circuits. Neuron 44, 23–30 (2004)

    Article  Google Scholar 

  20. Duerr, V., Krause, A., Schmitz, J., Cruse, H.: Neuroethological concepts and their transfer to walking machines. International Journal of Robotics Research 22, 151–167 (2003)

    Google Scholar 

  21. Dürr, V., Ebeling, W.: The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning. The Journal of Experimental Biology 208, 2237–2252 (2005)

    Article  Google Scholar 

  22. Egelhaaf, M., Borst, A.: A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons. Journal of Neuroscience 13(11), 4563–4574 (1993)

    Google Scholar 

  23. Egorov, A., Hamam, B., Fransen, E., Hasselmo, M., Alonso, A.: Graded persistent activity in entorhinal cortex neurons. Nature 14, 133–134 (2002)

    Google Scholar 

  24. Elsner, N.: The search for neural centers of cricket and grasshopper song. In: Neural Basis of Behavioural Adaptations, Fortschritte der Zoologie, vol. 39, pp. 167–193. Gustav Fischer Verlag, Stuttgart (1994)

    Google Scholar 

  25. Erber, J., Kierzek, S., Sander, E., Grandy, K.: Tactile learning in the honeybee. Journal of Comparative Physiology A 183, 737–744 (1998)

    Article  Google Scholar 

  26. Esch, H., Zhang, S., Srinivasan, M., Tautz, J.: Honeybee dances communicate distances measured by optic flow. Nature 411, 581–583 (2001)

    Article  Google Scholar 

  27. Ferree, T., Lockery, S.: Computational rules for chemotaxis in the nematode c. elegans. Journal of Computational Neuroscience 6(3), 263–277 (1999)

    Article  MATH  Google Scholar 

  28. Franceschini, N., Riehle, A., Nestour, A.L.: Directionally selective motion detection by insect neurons. In: Stavenga, D., Hardie, R. (eds.) Facets of Vision, pp. 360–390. Springer, Berlin (1989)

    Google Scholar 

  29. Franz, M., Mallot, H.: Biomimetic robot navigation. Robotics and Autonomous Systems 30, 133–153 (2000)

    Article  Google Scholar 

  30. Franz, M., Schoelkopf, B., Mallot, H., Buelthoff, H.: Where did i take that snapshot? scene-based homing by image matching. Biological Cybernetics 79, 191–202 (1998)

    Article  MATH  Google Scholar 

  31. Frye, M., Dickinson, M.: Closing the loop between neurobiology and flight behavior in Drosophila. Current Opinion in Neurobiology 14, 729–736 (2004)

    Article  Google Scholar 

  32. Frye, M., Dickinson, M.: Motor output reflects the linear superposition of visual and olfactory inputs in Drosophila. Journal of Experimental Biology 207, 123–131 (2004)

    Article  Google Scholar 

  33. Frye, M., Tarsitano, M., Dickinson, M.: Odor localization requires visual feedback during free flight in Drosophila melanogaster. Journal of Experimental Biology 206, 843–855 (2003)

    Article  Google Scholar 

  34. Fullmer, B., Miikkulainen, R.: Using marker-based genetic encoding of neural networks to evolve finite-state behaviour. In: Toward a Practice of Autonomous Systems. Proceedings of the First European Conference on Artificial Life. MIT Press, Cambridge (1992)

    Google Scholar 

  35. Galizia, C.G., Menzel, R.: The role of glomeruli in the neural representation of odours: results from optical recording studies. Journal of Insect Physiology 47, 115–130 (2001)

    Article  Google Scholar 

  36. Gao, Q., Yuan, B., Chess, A.: Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nature Neuroscience 3(8), 780–785 (2000)

    Article  Google Scholar 

  37. Giurfa, M.: Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Current Opinion in Neuroethology 13, 726–735 (2003)

    Article  Google Scholar 

  38. Giurfa, M., Menzel, R.: Insect visual perception: complex abilities of simple nervous systems. Current Opinion in Neurobiology 7, 505–513 (1997)

    Article  Google Scholar 

  39. Goepfert, M., Robert, D.: The mechanical basis of Drosophila audition. Journal of Experimental Biology 205, 1199–1208 (2002)

    Google Scholar 

  40. Gollisch, T., Schutze, H., Benda, J., Herz, A.: Energy integration describes sound-intensity coding in an insect auditory system. Journal of Neuroscience 22(23), 10434–10448 (2002)

    Google Scholar 

  41. Haferlach, T., Wessnitzer, J., Mangan, M., Webb, B.: Evolving a neural model of insect path integration. Adaptive Behavior 15(3), 273–287 (2007)

    Article  Google Scholar 

  42. Hartmann, G., Wehner, R.: The ant’s path integration system: a neural architecture. Biological Cybernetics 73, 483–497 (1995)

    MATH  Google Scholar 

  43. Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Ruesselskaefers Chlorophanus. Zeitschrift der Naturforschung 11b, 513–524 (1956)

    Google Scholar 

  44. Hayes, A., Martinoli, A., Goodman, R.: Distributed odor source localization. IEEE Sensors Journal 2(3), 260–271 (2002)

    Article  Google Scholar 

  45. Hedwig, B., Poulet, J.F.A.: Mechanisms underlying phonotactic steering in the cricket Gryllus bima culatus revealed with a fast trackball system. J. Exp. Biol. 208(5), 915–927 (2005)

    Article  Google Scholar 

  46. Heinze, S., Homberg, U.: Maplike representation of celestial e-vector orientations in the brain of an insect. Science 315, 995–997 (2007)

    Article  Google Scholar 

  47. Heisenberg, M.: What do the mushroom bodies do for the insect brain? an introduction. Learning and Memory 5, 1–10 (1998)

    Google Scholar 

  48. von Helversen, D., Wendler, G.: Coupling of visual to auditory cues during phonotactic approach in the phaneropterine bushcricket Poecilimon affinis. Journal of Comparative Physiology A 186, 729–736 (2000)

    Article  Google Scholar 

  49. Hengstenberg, R.: Gaze control in the bowfly Calliphora: a multisensory, two-stage integration process. The Neurosciences 3, 19–29 (1991)

    Article  Google Scholar 

  50. Hennig, R., Franz, A., Stumpner, A.: Processing of auditory information in insects. Microscopy Research and Technique 63(6), 351–374 (2004)

    Article  Google Scholar 

  51. Higgins, C.: Nondirectional motion underlie insect behavioral dependence on image speed. Biological Cybernetics 91, 326–332 (2004)

    Article  MATH  Google Scholar 

  52. Higgins, C., Douglass, J., Strausfeld, N.: The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects. Visual Neuroscience 21, 567–586 (2004)

    Article  Google Scholar 

  53. Higgins, C., Pant, V.: An elaborated model of fly small-target tracking. Biological Cybernetics 91, 417–428 (2004)

    Article  MATH  Google Scholar 

  54. Hildebrand, J., Shepherd, G.: Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annual Review of Neuroscience 20, 595–631 (1997)

    Article  Google Scholar 

  55. Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Physics in Medicine and Biology 46, 1–45 (2001)

    Article  Google Scholar 

  56. Homberg, U.: In the search of the sky compass in the insect brain. Naturwissenschaften 91, 199–208 (2004)

    Article  Google Scholar 

  57. Homberg, U., Christensen, T., Hildebrand, J.: Structure and function of the deutocerebrum in insects. Annual Review of Entomology 34, 477–501 (1989)

    Article  Google Scholar 

  58. Honegger, H.W.: A preliminary note on a new optomotor response in crickets: antennal tracking of moving targets. Journal of Comparative Physiology A 142(3), 419–421 (1981)

    Article  Google Scholar 

  59. Horstmann, W., Egelhaaf, M., Warzecha, A.K.: Synaptic interactions increase optic flow specificity. European Journal of Neuroscience 12, 2157–2165 (2000)

    Article  Google Scholar 

  60. Hoy, R., Nolen, T., Brodfuehrer, P.: The neuroethology of acoustic startle and escape in flying insects. Journal of Experimental Biology 146, 287–306 (1989)

    Google Scholar 

  61. Hoy, R., Robert, D.: Tympanal hearing in insects. Annual Review of Entomology 41, 433–450 (1996)

    Article  Google Scholar 

  62. Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H., Rabinovich, M.: Learning classification in the olfactory system of insects. Neural Computation 16, 1601–1640 (2004)

    Article  MATH  Google Scholar 

  63. Imaizumi, K., Pollack, G.: Central projections of auditory receptor neurons of crickets. Journal of Comparative Neurology 493, 439–447 (2005)

    Article  Google Scholar 

  64. Ishida, H., Nakamoto, T., Moriizumi, T., Kikas, T., Janata, J.: Plume-tracking robots: a new application of chemical sensors. Biological Bulletin 200, 222–226 (2001)

    Article  Google Scholar 

  65. Iwama, A., Shibuya, T.: Physiology and morphology of olfactory neurons associating with the protocerebral lobe of the honeybee brain. Journal of Insect Physiology 44, 1191–1204 (1998)

    Article  Google Scholar 

  66. Izhikevich, E.: Resonate-and-fire neurons. Neural Networks 14, 883–894 (2001)

    Article  Google Scholar 

  67. Izhikevich, E.: Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT Press, Cambridge (in press, 2007)

    Google Scholar 

  68. Jacobs, G., Miller, J., Murphey, R.: Integrative mechanisms controlling directional sensitivity of an identified sensory interneuron. Journal of Neuroscience 6(8), 2298–2311 (1986)

    Google Scholar 

  69. Jacobs, G., Theunissen, F.: Extraction of sensory parameters from a neural map by primary sensory interneurons. Journal of Neuroscience 20(8), 2934–2943 (2000)

    Google Scholar 

  70. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive Behavior 6(2), 325–368 (1997), http://dx.doi.org

    Article  Google Scholar 

  71. Jander, R., Volk-Heinrichs, I.: Das strauch-spezifische visuelle perceptor-system der Stabheuschrecke (Carausius Morosus). Zeitschrift vor physiology 70, 425–447 (1970)

    Article  Google Scholar 

  72. Kanou, M., Teshima, N., Nagami, T.: Rearing conditions required for behavioral compensation after unilateral cercal ablation in the cricket Gryllus bimaculatus. Zoological Science 19(4), 403–409 (2002)

    Article  Google Scholar 

  73. Kazadi, S., Goodman, R., Tsikata, D., Green, D., Lin, H.: An autonomous water vapor plume tracking robot using passive resistive polymer sensors. Autonomous Robots 9, 175–188 (2000)

    Article  Google Scholar 

  74. Kern, R., Lutterklas, M., Egelhaaf, M.: Neuronal representation of optic flow experienced by unilaterally blinded flies on their mean walking trajectories. Journal of Comparative Physiology A 186, 467–479 (2000)

    Article  Google Scholar 

  75. Kern, R., Lutterklas, M., Petereit, C., Lindemann, J., Egelhaaf, M.: Neuronal processing of behaviourally generated optic flow: experiments and model simulations. Network: computation in neural systems 12, 351–369 (2001)

    Article  Google Scholar 

  76. Kern, R., Petereit, C., Egelhaaf, M.: Neural processing of naturalistic optic flow. Journal of Neuroscience 21, 139–144 (2001)

    Google Scholar 

  77. Kimchi, T., Etienne, A., Terkel, J.: A subterranean mammal uses the magnetic compass for path integration. Proceedings of the National Academy of Sciences USA 101, 1105–1109 (2004)

    Article  Google Scholar 

  78. Kimmerle, B., Egelhaaf, M.: Performance of fly visual interneurons during object fixation. Journal of Neuroscience 20(16), 6256–6266 (2000)

    Google Scholar 

  79. Kindermann, T.: Behavior and adaptability of a six-legged walking system with highly distributed control. Adaptive Behavior 9, 16–41 (2001)

    Google Scholar 

  80. Koch, C.: Biophysics of Computation. Oxford University Press, Oxford (1999)

    Google Scholar 

  81. Kohstall-Schnell, D., Gras, H.: Activity of giant interneurones and other wind-sensitive elements of the terminal ganglion in the walking cricket. Journal of Experimental Biology 193, 157–181 (1994)

    Google Scholar 

  82. Korsching, S.: Odor maps in the brain: spatial aspects of odor representation in sensory surface and olfactory bulb. Cellular and Molecular Life Sciences 58, 520–530 (2001)

    Article  Google Scholar 

  83. Korsching, S.: Olfactory maps and odor images. Current Opinion in Neurobiology 12, 387–392 (2002)

    Article  Google Scholar 

  84. Krapp, H., Hengstenberg, B., Hengstenberg, R.: Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. Journal of Neurophysiology 79(4), 1902–1917 (1998)

    Google Scholar 

  85. Krapp, H., Hengstenberg, R., Egelhaaf, M.: Binocular contributions to optic flow processing in the fly visual system. Journal of Neurophysiology 85(2), 724–734 (2001)

    Google Scholar 

  86. Labhart, T., Meyer, E.: Detectors for polarized skylight in insects: a survey of ommatidial specialisations in the dorsal rim area of the compound eye. Microscopy Research and Technique 47, 368–379 (1999)

    Article  Google Scholar 

  87. Labhart, T., Meyer, E.: Neural mechanisms in insect navigation: polarization compass and odometer. Current Opinion in Neurobiology 12, 707–714 (2002)

    Article  Google Scholar 

  88. Lambrinos, D., Moeller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems 30, 39–64 (2000)

    Article  Google Scholar 

  89. Land, M.: Visual acuity in insects. Annual Review of Entomology 42, 147–177 (1997)

    Article  Google Scholar 

  90. Land, M.: Motion and vision: why animals move their eyes. Journal of Comparative Physiology A 185, 341–352 (1999)

    Article  Google Scholar 

  91. Larsson, M., Svensson, G.: Methods in insect sensory ecology. In: Methods in Insect Sensory Neuroscience. CRC Press, Boca Raton (2005)

    Google Scholar 

  92. Latimer, W.: Acoustic competition in bush crickets. Ecological Entomology 6, 35–45 (1981)

    Article  Google Scholar 

  93. Laurent, G.: Dendritic processing in invertebrates: a link to function. In: Dendrites, pp. 290–309. Oxford University Press, Oxford (1999)

    Google Scholar 

  94. Laurent, G.: Olfactory network dynamics and the coding of multidimensional signals. Nature Reviews Neuroscience 3(11), 884–895 (2002)

    Article  Google Scholar 

  95. Laurent, G., MacLeod, K., Stopfer, M., Wehr, M.: Spatiotemporal structure of olfactory inputs to the mushroom bodies. Learning and Memory 5, 124–132 (1998)

    Google Scholar 

  96. Laurent, G., Stopfer, M., Friedrich, R., Rabinovich, M., Volkovskii, A., Abarbanel, H.: Odor encoding as an active, dynamical process: experiments, computation, and theory. Annual Review of Neuroscience 24, 263–297 (2001)

    Article  Google Scholar 

  97. Laurent, G., Wehr, M., Davidowitz, H.: Temporal representations of odors in an olfactory network. Journal of Neuroscience 16(12), 3837–3847 (1996)

    Google Scholar 

  98. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  99. Mason, A., Faure, P.: The physiology of insect auditory afferents. Microscopy Research and Technique 63(6), 338–350 (2004)

    Article  Google Scholar 

  100. Matthies, L.: Mars microrover navigation: Performance evaluation and enhancement. Autonomous Robots 2(4), 291–311 (1995)

    Article  Google Scholar 

  101. Menegatti, E., Zoccarato, M., Pagello, E., Ishiguro, H.: Image-based monte-carlo localisation with omnidirectional images. Robotics and Autonomous Systems 48(1), 17–30 (2004)

    Article  Google Scholar 

  102. Menzel, R., Giurfa, M.: Cognitive architecture of a mini-brain: the honeybee. Trends in Cognitive Sciences 5(2), 62–71 (2001)

    Article  Google Scholar 

  103. Michelsen, A.: Directional heading in crickets and other small animals. In: Neural Basis of Behavioural Adaptations, Fortschritte der Zoologie, vol. 39, pp. 195–207. Gustav Fischer Verlag, Stuttgart (1994)

    Google Scholar 

  104. Miller, J., Jacobs, G., Theunissen, F.: Representation of sensory information in the cricket cercal sensory system. Response properties of the primary interneurons. Journal of Neurophysiology 66(5), 1680–1689 (1991)

    Google Scholar 

  105. Mittelstaedt, H., Mittelstaedt, M.L.: Mechanismen der Orientierung ohne richtende Außenreize. Fortschr. Zool. 21, 46–58 (1973)

    Google Scholar 

  106. Mittelstaedt, M., Mittelstaedt, H.: Idiothetic navigation in humans: estimation of path length. Experimental Brain Research 139, 318–332 (2001)

    Article  Google Scholar 

  107. Mizunami, M.: Functional diversity of neural organisation in insect ocellar systems. Vision Research 35, 443–452 (1995)

    Article  Google Scholar 

  108. Mizunami, M., Weibrecht, J., Strausfeld, N.: Mushroom bodies of the cockroach: their participation in place memory. Journal of Comparative Neurology 402, 520–537 (1998)

    Article  Google Scholar 

  109. Moeller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., Wehner, R.: Insect strategies of visual homing in mobile robots. In: Biorobotics - methods and applications, pp. 37–66. AAAI Press / The MIT Press (2001)

    Google Scholar 

  110. Moller, P., Goerner, P.: Homing by path integration in the spider Agalena labyrinthica Clerck. Journal of Comparative Physiology A 174, 221–229 (1994)

    Article  Google Scholar 

  111. Mueller, M., Homberg, U., Kuehn, A.: Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria). Cell Tissue Research 288, 159–176 (1997)

    Article  Google Scholar 

  112. Nowotny, T., Huerta, R., Abarbanel, H., Rabinovich, M.: Self-organization in the olfactory system: one shot odor recognition in insects. Biological Cybernetics 93, 436–446 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  113. Nowotny, T., Rabinovich, M., Huerta, R., Abarbanel, H.: Decoding temporal information through slow lateral excitation in the olfactory system of insects. Journal of Computational Neuroscience 15, 271–281 (2003)

    Article  Google Scholar 

  114. Okada, R., Sakura, M., Mizunami, M.: Distribution of dendrites of descending neurons and its implications for the basic organisation of the cockroach brain. Journal of Comparative Neurology 458, 158–174 (2003)

    Article  Google Scholar 

  115. Perez-Orive, J., Bazhenov, M., Laurent, G.: Intrinsic and circuit properties favor coincidence detection for decoding oscillatory input. Journal of Neuroscience 24, 6037–6047 (2004)

    Article  Google Scholar 

  116. Perez-Orive, J., Mazor, O., Turner, G., Cassenaer, S., Wilson, R., Laurent, G.: Oscillations and sparsening of odor representations in the mushroom bodies. Science 297, 359–365 (2002)

    Article  Google Scholar 

  117. Plewka, R.: Zur erkennung zeitlicher gesangsstrukturen bei laubheuschrecken: Eine vergleichende untersuchung der arten tettigonia cantans und leptophyes laticauda. Ph.D. thesis, University of Frankfurt (1993)

    Google Scholar 

  118. Pollack, G.: Neural processing of acoustic signals. In: Hoy, R., Popper, A., Fay, R. (eds.) Comparative Hearing: Insects, pp. 139–196. Springer, Berlin (1998)

    Google Scholar 

  119. Poulet, J., Hedwig, B.: Auditory orientation in crickets: pattern recognition controls reactive steering. PNAS 102, 15665–15669 (2005)

    Article  Google Scholar 

  120. Quenet, B., Dreyfus, G., Masson, C.: From complex signal to adapted behavior: a theoretical approach of the honeybee olfactory brain. In: Burdet, G., Combe, P., Parodi, O. (eds.) Series in Mathematical Biology and Medicine, vol. 7, pp. 104–126. World Scientific, Singapore (1999)

    Google Scholar 

  121. Quenet, B., Horn, D., Dreyfus, G., Dubois, R.: Temporal coding in an olfactory oscillatory model. Neurocomputing 38(40), 831–836 (2001)

    Article  Google Scholar 

  122. Rabinovich, M., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H., Laurent, G.: Dynamical encoding by networks of competing neuron groups: winnerless competition. Physical Review Letters 87, 68,102 (2001)

    Article  Google Scholar 

  123. Reeve, R., Webb, B.: New neural circuits for robot phonotaxis. Philosophical Transactions of the Royal Society London A 361, 2245–2266 (2003)

    Article  MathSciNet  Google Scholar 

  124. Robert, D., Goepfert, M.: Novel schemes for hearing and orientation in insects. Current Opinion in Neurobiology 12, 715–720 (2002)

    Article  Google Scholar 

  125. Ronacher, B., Wehner, R.: Desert ants, Cataglyphis fortis, use self-induced optic flow to measure distances travelled. Journal of Comparative Physiology A 177, 21–27 (1995)

    Article  Google Scholar 

  126. Rosano, H.: Decentralised compliant control for hexapod robots: A stick insect based walking model. Ph.D. thesis, School of Informatics, University of Edinburgh (2007)

    Google Scholar 

  127. Rosano, H., Webb, B.: A dynamic model of thoracic differentiation for the control of turning in the stick insect. Biological Cybernetics 97(3), 229–246 (2007)

    Article  MATH  Google Scholar 

  128. Russo, P.: Sistemi neurali biologici e controllo predittivo per l’integrazione acustico-Visiva nel grillo. Master’s thesis, Faculty of Computer Science and Engineering, University of Catania (2005)

    Google Scholar 

  129. Russo, P., Webb, B., Reeve, R., Arena, P., Patane, L.A.: Cricket-inspired neural network for feedforward compensation and multisensory integration. In: IEEE Conference on Decision and Control and European Control Conference (2005)

    Google Scholar 

  130. Schaefer, P., Ritzmann, R.: Descending influences on escape behavior and motor pattern in the cockroach. Journal of Neurobiology 49, 9–28 (2001)

    Article  Google Scholar 

  131. Schildberger, K.: Multimodal interneurons in the cricket brain: properties of identified extrinsic mushroom body cells. Journal of Comparative Physiology A 154, 71–79 (1984)

    Article  Google Scholar 

  132. Schildberger, K., Milde, J., Horner, M.: The function of auditory neurons in cricket phonotaxis. II. Modulation of auditory responses during locomotion. Journal of Comparative Physiology A 163, 633–640 (1988)

    Article  Google Scholar 

  133. Schmitz, B., Scharstein, H., Wendler, G.: Phonotaxis in Gryllus campestris l. I Mechanism of acoustic orientation in intact female cricket. Journal of Comparative Physiology A 148, 431–444 (1982)

    Article  Google Scholar 

  134. Schmitz, J., Dean, J., Kindermann, T., Schumm, M., Cruse, H.: A biologically inspired controller for hexapod walking: Simple solutions by exploiting physical properties. The biological bulletin 200, 195–200 (2001)

    Article  Google Scholar 

  135. Schul, J.: Song recognition by temporal cues in a group of closely related bushcricket species (genus Tettigonia). Journal of Comparative Physiology A 183, 401–410 (1998)

    Article  Google Scholar 

  136. Seguinot, V., Cattet, J., Benhamou, S.: Path integration in dogs. Animal Behaviour 55, 787–797 (1998)

    Article  Google Scholar 

  137. Song, S., Miller, K., Abbott, L.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3(9), 919–926 (2000)

    Article  Google Scholar 

  138. Sprent, P., Smeeton, N.: Applied Nonparametric Statistical Methods, pp. 133–135. Chapman and Hall, Boca Raton (2007)

    MATH  Google Scholar 

  139. Srinivasan, M., Poteser, M., Kral, K.: Motion detection in insect orientation and navigation. Vision Research 39, 2749–2766 (1999)

    Article  Google Scholar 

  140. Srinivasan, M., Zhang, S.: Visual motor computations in insects. Annual Review of Neuroscience 27, 679–696 (2004)

    Article  Google Scholar 

  141. Stabel, J., Wendler, G., Scharstein, H.: Cricket phonotaxis: localization depends on recognition of the calling song pattern. Journal of Comparative Physiology A 165, 165–177 (1989)

    Article  Google Scholar 

  142. Stange, G., Stowe, S., Chahl, J., Massaro, A.: Anisotropic imaging in the dragonfly median ocellus: a matched filter for horizon detection. Journal of Comparative Physiology A 188, 455–467 (2002)

    Article  Google Scholar 

  143. Staudacher, E.: Sensory responses of descending brain neurons in the walking cricket, Gryllus bimaculatus. Journal of comparative physiology A 187, 1–17 (2001)

    Article  Google Scholar 

  144. Staudacher, E., Schildberger, K.: Gating of sensory responses of descending brain neurones during walking in crickets. Journal of Experimental Biology 201, 559–572 (1998)

    Google Scholar 

  145. Stopfer, M., Laurent, G.: Short-term memory in olfactory network dynamics. Nature 402, 664–668 (1999)

    Article  Google Scholar 

  146. Stout, J., McGhee, R.: Attractiveness of the male acheta-domestica calling song to females 2. the relative importance of syllable period, intensity, and chirp rate. Journal of comparative physiology A 164(2), 277–287 (1988)

    Article  Google Scholar 

  147. Strausfeld, N., Hildebrand, J.: Olfactory systems: common design, uncommon origins? Current Opinion in Neurobiology 9, 634–639 (1999)

    Article  Google Scholar 

  148. Stumpner, A.: Picrotoxin eliminates frequency selectivity of an auditory interneuron in a bushcricket. Journal of Neurophysiology 79, 2408–2415 (1998)

    Google Scholar 

  149. Stumpner, A., van Helversen, D.: Evolution and function of auditory systems in insects. Naturwissenschaften 88(4), 159–170 (2001)

    Article  Google Scholar 

  150. Svenshnikov, A.: Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions, p. 85. W.B. Saunders Company, Philadelphia (1968)

    Google Scholar 

  151. Szenher, M.: Visual homing in dynamic indoor environments. Ph.D. thesis, School of Informatics, University of Edinburgh (2008)

    Google Scholar 

  152. Tammero, L., Dickinson, M.: The influence of visual landscape on the free flight behavior of the fruitfly Drosophila melanogaster. The Journal of Experimental Biology 205, 327–343 (2002)

    Google Scholar 

  153. Theunissen, F.: From synchrony to sparseness. Trends in Neurosciences 26, 61–64 (2003)

    Article  Google Scholar 

  154. Tinbergen, N., Kruyt, W.: On the orientation of the digger wasp, philanthus triangulum fabr, III. Selective learning of landmarks. In: Tinbergen, N. (ed.) The Animal and Its World. Harvard University Press (1938)

    Google Scholar 

  155. Vardy, A., Möller, R.: Biologically plausible visual homing methods based on optical flow techniques. Connection Science 17(1-2), 47–89 (2005)

    Article  Google Scholar 

  156. Vickerstaff, R., Paolo, E.D.: Evolving neural models of path integration. Journal of Experimental Biology 208, 3349–3366 (2005)

    Article  Google Scholar 

  157. Viola, P., Wells, W.M.: Alignment by maximization of mutual information. International Journal of Computer Vision 24(2), 137–154 (1995)

    Article  Google Scholar 

  158. Webb, B.: Neural mechanisms for prediction: do insects have forward models? Trends in neuroscience 27(5), 278–282 (2004)

    Article  Google Scholar 

  159. Webb, B., Harrison, R.: Integrating sensorimotor systems in a robot model of cricket behavior. In: Sensor Fusion and Decentralised Control in Robotic Systems III. SPIE, Boston, November 6-8 (2000)

    Google Scholar 

  160. Webb, B., Reeve, R.: Reafferent or redundant: How should a robot cricket use an optomotor reflex? Adaptive Behaviour 11(3), 137–158 (2003)

    Article  Google Scholar 

  161. Webb, B., Scutt, T.: A simple latency dependent spiking neuron model of cricket phonotaxis. Biological Cybernetics 82(3), 247–269 (2000)

    Article  Google Scholar 

  162. Webb, B., Wessnitzer, J., Bush, S., Schul, J., Buchli, J., Ijspeert, A.: Resonant neurons and bushcricket behaviour. Journal of Comparative Physiology A 193, 285–288 (2007)

    Article  Google Scholar 

  163. Weber, K., Venkatesh, S., Srinivasan, M.: An insect-based approach to robotic homing. In: Jain, A., Venkatash, S., Lovell, B. (eds.) Fourteenth International Conference on Pattern Recognition, pp. 297–299. IEEE, Los Alimitos (1998)

    Chapter  Google Scholar 

  164. Weber, T., Thorson, J.: Auditory behaviour in the cricket. II. Interaction of direction of tracking with perceive temporal pattern in split-song paradigms. Journal of Comparative Physiology A 163, 13–22 (1988)

    Article  Google Scholar 

  165. Wehner, R.: The ants celestial compass system: spectral and polarization channels. In: Lehrer, M. (ed.) Orientation and Communication in Arthropods, pp. 145–285. Birkhauser, Basel (1998)

    Google Scholar 

  166. Wehner, R.: Desert ant navigation: how miniature brains solve complex tasks. Journal of Comparative Physiology A 189, 579–588 (2003)

    Article  Google Scholar 

  167. Weisstein, E.: Method of steepest descent. From Mathworld - A Wolfram Web Resource (2006), http://mathworld.wolfram.com/MethodofSteepestDescent.html

  168. Wessnitzer, J., Mangan, M., Webb, B.: Place memory in crickets. Proceedings of the Royal Society of London B (2008)

    Google Scholar 

  169. Wessnitzer, J., Webb, B.: Multimodal sensory integration in insects - towards insect brain control architectures. Bioinspiration and Biomimetics 1, 63–75 (2006)

    Article  Google Scholar 

  170. Wittlinger, M., Wehner, R., Wolf, H.: The ant odometer: stepping on stilts and stumps. Science 312, 1965–1967 (2006)

    Article  Google Scholar 

  171. Wittmann, T., Schwegler, H.: Path integration - a network model. Biological Cybernetics 73, 569–575 (1995)

    Article  MATH  Google Scholar 

  172. Wohlers, D., Huber, F.: Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket Gryllus campestris l. Journal of Comparative Physiology 146, 161–173 (1981)

    Google Scholar 

  173. Wohlgemuth, S., Ronacher, B., Wehner, R.: Ant odometry in the third dimension. Nature 411, 795–798 (2001)

    Article  Google Scholar 

  174. Wolf, R., Heisenberg, M.: Basic organisation of operant behaviour as revealed in Drosophila flight orientation. Journal of Comparative Physiology A 169, 699–705 (1991)

    Article  Google Scholar 

  175. Wolf, R., Voss, A., Hein, S., Heisenberg, M.: Can a fly ride a bicycle? Philosophical Transactions of the Royal Society B 337, 261–269 (1992)

    Article  Google Scholar 

  176. Yack, J.: The structure and function of auditory chordotonal organs in insects. Microscopy Research and Technique 63(6), 315–337 (2004)

    Article  Google Scholar 

  177. Yager, D.: Structure, development, and evolution of insect auditory systems. Microscopy Research and Technique 47(6), 380–400 (1999)

    Article  MathSciNet  Google Scholar 

  178. Ye, S., Leung, V., Khan, A., Baba, Y., Comer, C.: The antennal system and cockroach evasive behaviour I Roles for visual and mechanosensory cues in the response. Journal of Comparative Physiology A 189, 89–96 (2003)

    Google Scholar 

  179. Zampoglou, M., Szenher, M., Webb, B.: Adaptation of controllers for image-based homing. Adaptive Behavior 14(4), 381–399 (2006), http://dx.doi.org/

    Article  Google Scholar 

  180. Zeil, J., Hofmann, M., Chahl, J.: Catchment areas of panoramic snapshots in outdoor scenes. Journal of the Optical Society of America A 20, 450–469 (2003)

    Article  Google Scholar 

  181. Zeiner, R., Tichy, H.: Combined effects of olfactory and mechanical inputs in antennal lobe neurons of the cockroach. Journal of Comparative Physiology A 182, 467–473 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Webb, B. et al. (2009). Low Level Approaches to Cognitive Control. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots. Cognitive Systems Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88464-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88464-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88463-7

  • Online ISBN: 978-3-540-88464-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics