Skip to main content

Gravitational Waves from Braneworld Black Holes

  • Chapter
Physics of Black Holes

Part of the book series: Lecture Notes in Physics ((LNP,volume 769))

  • 3374 Accesses

Abstract

In this article, we present the black string model of a braneworld black hole and analyze its perturbations. We develop the perturbation formalism for Randall–Sundrum model from first principles and discuss the weak-field limit of the model in the solar system. We derive explicit equations of motion for the axial and spherical gravitational waves in the black string background. These are solved numerically in various scenarios, and the characteristic late-time signal from a black string is obtained. We find that if one waits long enough after some transient event, the signal from the string will be a superposition of nearly monochromatic waves with frequencies corresponding to the masses of the Kaluza–Klein modes of the model. We estimate the amplitude of the spherical component of these modes when they are excited by a point particle orbiting the string.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Cardoso, T. Hiramatsu, K. Koyama and S. S. Seahra, Scalar perturbations in braneworld cosmology. JCAP 0707:008 (2007).

    Google Scholar 

  2. A. Chamblin, S. W. Hawking and H. S. Reall, Brane-world black holes. Phys. Rev. D61, 065007 (2000).

    ADS  MathSciNet  Google Scholar 

  3. C. Clarkson and R. Maartens, Gravity-wave detectors as probes of extra dimensions. Gen. Rel. Grav. 37, 1681–1687 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. C. Clarkson and S. S. Seahra, A gravitational wave window on extra dimensions. Class. Quant. Grav. 24, F33–F40 (2007).

    Article  MATH  ADS  Google Scholar 

  5. R. Emparan, A. Fabbri and N. Kaloper, Quantum black holes as holograms in ads braneworlds. JHEP 08, 043 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Garriga and T. Tanaka, Gravity in the brane-world. Phys. Rev. Lett. 84, 2778–2781 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. R. Gregory and R. Laflamme, Black strings and p-branes are unstable. Phys. Rev. Lett. 70, 2837–2840 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. R. Gregory, Black string instabilities in anti-de sitter space. Class. Quant. Grav. 17, L125–L132 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. T. Hiramatsu, K. Koyama and A. Taruya, Evolution of gravitational waves in the high-energy regime of brane-world cosmology. Phys. Lett. B609, 133–142 (2005).

    ADS  Google Scholar 

  10. D. J. Kapner et al., Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 98, 021101 (2007).

    Article  ADS  Google Scholar 

  11. T. Kobayashi and T. Tanaka, The spectrum of gravitational waves in randall-sundrum braneworld cosmology. Phys. Rev. D73, 044005 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  12. B. Kol, The phase transition between caged black holes and black strings: A review. Phys. Rept. 422, 119–165 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Koyama and A. Tomimatsu, Asymptotic tails of massive scalar fields in schwarzschild background. Phys. Rev. D64, 044014 (2001).

    ADS  MathSciNet  Google Scholar 

  14. H. Kudoh, T. Tanaka and T. Nakamura, Small localized black holes in braneworld: Formulation and numerical method. Phys. Rev. D68, 024035 (2003).

    ADS  MathSciNet  Google Scholar 

  15. L. Randall and R. Sundrum, An alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. S. S. Seahra, Gravitational waves and cosmological braneworlds: A characteristic evolution scheme. Phys. Rev. D74, 044010 (2006).

    ADS  MathSciNet  Google Scholar 

  18. S. S. Seahra, C. Clarkson and R. Maartens, Detecting extra dimensions with gravity wave spectroscopy. Phys. Rev. Lett. 94, 121302 (2005).

    Article  ADS  Google Scholar 

  19. T. Tanaka, Classical black hole evaporation in randall-sundrum infinite braneworld. Prog. Theor. Phys. Suppl. 148, 307–316 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seahra, S. (2009). Gravitational Waves from Braneworld Black Holes. In: Papantonopoulos, E. (eds) Physics of Black Holes. Lecture Notes in Physics, vol 769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88460-6_9

Download citation

Publish with us

Policies and ethics