Skip to main content

Optimised Search Heuristic Combining Valid Inequalities and Tabu Search

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 5296)

Abstract

This paper presents an Optimised Search Heuristic that combines a tabu search method with the verification of violated valid inequalities. The solution delivered by the tabu search is partially destroyed by a randomised greedy procedure, and then the valid inequalities are used to guide the reconstruction of a complete solution. An application of the new method to the Job-Shop Scheduling problem is presented.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fernandes, S., Lourenço, H.R.: Optimized search heuristics. Technical report, Universitat Pompeu Fabra (2007)

    Google Scholar 

  2. Nowicki, E., Smutnicki, C.: An advanced tabu search algorithm for the job shop problem. Journal of Scheduling 8, 145–159 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, S., Talukdar, S., Sadeh, N.: Job-shop-scheduling by a team of asynchronous agent. In: IJCAI 1993 Workshop on Knowledge-Based Production, Scheduling and Control, Chambéry, France (1993)

    Google Scholar 

  4. Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms and other search paradigms. In: 1999 Congress on Evolutionary Computation (CEC). IEEE Press, Los Alamitos (1999)

    Google Scholar 

  5. Tamura, H., Hirahara, A., Hatono, I., Umano, M.: An approximate solution method for combinatorial optimisation. Transactions of the Society of Instrument and Control Engineers 130, 329–336 (1994)

    Article  Google Scholar 

  6. Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop scheduling. Management Science 34(3), 391–401 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Applegate, D., Cook, W.: A computational study of the job-shop scheduling problem. ORSA Journal on Computing 3(2), 149–156 (1991)

    Article  MATH  Google Scholar 

  8. Caseau, Y., Laburthe, F.: Disjunctive scheduling with task intervals. Technical Report LIENS 95-25, Ecole Normale Superieure Paris (July 1995)

    Google Scholar 

  9. Balas, E., Vazacopoulos, A.: Guided local search with shifting bottleneck for job shop scheduling. Management Science 44(2), 262–275 (1998)

    Article  MATH  Google Scholar 

  10. Pezzella, F., Merelli, E.: A tabu search method guided by shifting bottleneck for the job shop scheduling problem. European Journal of Operational Research 120, 297–310 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lourenço, H.R.: Job-shop scheduling: Computational study of local search and large-step optimization methods. European Journal of Operational Research 83, 347–367 (1995)

    Article  MATH  Google Scholar 

  12. Lourenço, H.R., Zwijnenburg, M.: Combining large-step optimization with tabu-search: Application to the job-shop scheduling problem. In: Osman, I.H., Kelly, J.P. (eds.) Meta-heuristics: Theory & Applications. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  13. Schaal, A., Fadil, A., Silti, H.M., Tolla, P.: Meta heuristics diversification of generalized job shop scheduling based upon mathematical programming techniques. In: CP-AI-OR 1999 (1999)

    Google Scholar 

  14. Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods to improve MIP solutions. Mathematical Programming, Ser. A 102, 71–90 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jain, A.S., Meeran, S.: Deterministic job shop scheduling: Past, present and future. European Journal of Operational Research 133, 390–434 (1999)

    Article  MATH  Google Scholar 

  16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  17. Roy, B., Sussman, B.: Les problems d’ordonnancement avec constraintes disjonctives. Technical report, Notes DS 9 bis, SEMA, Paris (1964)

    Google Scholar 

  18. Fernandes, S., Lourenço, H.R.: A GRASP and branch-and-bound metaheuristic for the job-shop scheduling. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 60–71. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Glover, F.: Tabu search - part i. ORSA Journal on Computing 1(3), 190–206 (1989)

    Article  MATH  Google Scholar 

  21. Glover, F.: Tabu search - part ii. ORSA Journal on Computing 2(1), 4–32 (1990)

    Article  MATH  Google Scholar 

  22. Carlier, J., Pinson, E.: An algorithm for solving the job-shop problem. Management Science 35(2), 164–176 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schrage, L.: Solving resource-constrained network problems by implicit enumeration: Non pre-emptive case. Operations Research 18, 263–278 (1970)

    Article  MATH  Google Scholar 

  24. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp. 225–251. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

  25. Lawrence, S.: Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques. Technical report, Graduate School of Industrial Administration, Carnegie-Mellon University (1984)

    Google Scholar 

  26. Storer, R.H., Wu, S.D., Vaccari, R.: New search spaces for sequencing problems with application to job shop scheduling. Management Science 38(10), 1495–1509 (1992)

    Article  MATH  Google Scholar 

  27. Taillard, E.D.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64(2), 278–285 (1993)

    Article  MATH  Google Scholar 

  28. Yamada, T., Nakano, R.: A genetic algorithm applicable to large-scale job-shop problems. In: Manner, R., Manderick, B. (eds.) Parallel Problem Solving from Nature 2, pp. 281–290. Elsevier Science, Brussels Belgium (1992)

    Google Scholar 

  29. Nowicki, E., Smutnicki, C.: Some new tools to solve the job shop problem. Technical Report 60/2002, Institute of Engineering Cybernetics, Wroclaw University of Technology (2002)

    Google Scholar 

  30. Nowicki, E., Smutniki, C.: A fast taboo search algorithm for the job shop problem. Management Science 42(6), 797–813 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernandes, S., Lourenço, H.R. (2008). Optimised Search Heuristic Combining Valid Inequalities and Tabu Search. In: Blesa, M.J., et al. Hybrid Metaheuristics. HM 2008. Lecture Notes in Computer Science, vol 5296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88439-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88439-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88438-5

  • Online ISBN: 978-3-540-88439-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics