Advertisement

Weighted Top Score Pair Method for Gene Selection and Classification

  • Huaien Luo
  • Yuliansa Sudibyo
  • Lance D. Miller
  • R. Krishna Murthy Karuturi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5265)

Abstract

Gene selection and expression profiles classification are important for diagnosing the disease using microarray technology and revealing the underlying biological processes. This paper proposes a weighted top scoring pair (WTSP) method which is a generalization of the current top scoring pair (TSP) method. By considering the proportions of samples from different classes, the WTSP method aims to minimize the error or misclassification rate. Results from several experimental microarray data have shown the improved performance of classification using the WTSP method.

Keywords

Microarray Gene selection Classification Weighted Top Score Pairs Cross-validation 

References

  1. 1.
    Dudoit, S., Yang, Y.H., Callow, M.J., Speed, T.P.: Statistical Methods for Identifying Differentially Expressed Genes in Replicated cDNA Microarray Experiments. Statistica Sinica 12, 111–139 (2002)Google Scholar
  2. 2.
    Bo, T., Jonassen, I.: New Feature Subset Selection Procedures for Classification of Expression Profiles. Genome Biology 3, research0017.1–research0017.11(2002) Google Scholar
  3. 3.
    Kuo, W.P., et al.: Functional Relationships Between Gene Pairs in Oral Squamous Cell Carcinoma. In: Proceedings of American Medical Informatics Association (AMIA) 2003 Symposium (2003)Google Scholar
  4. 4.
    Hanczar, B., Zucker, J., Henegar, C., Saitta, L.: Feature Construction from Synergic Pairs to Improve Microarray-based Classification. Bioinformatics 23, 2866–2872 (2007)CrossRefPubMedGoogle Scholar
  5. 5.
    Rapaport, F., Zinovyev, A., Dutreix, M., Barillot, E., Vert, J.: Classification of Microarray Data Using Gene Networks. BMC Bioinformatics 8 (2007)Google Scholar
  6. 6.
    Karuturi, R.K.M., Vinsensius, B.V.: Friendly Neighbors Method for Unsupervised Determination of Gene Significance in Time-course Microarray Data. In: Proc. of the Fourth IEEE Symposium on Bioinformatics and Bioengineering. IEEE Press, Los Alamitos (2004)Google Scholar
  7. 7.
    Karuturi, R.K.M., Wong, S., Sung, W.K., Miller, L.D.: Differential Friendly Neighbors Algorithm for Differential Relationship Based Gene Selection and Classification using Microarray Data. In: Proc. of the Intl. Conf. on Data Mining (DMIN 2006), USA (2006)Google Scholar
  8. 8.
    Xiong, M., Jin, L., Li, W., Boerwinkle, E.: Computational Methods for Gene Expression Based Tumor Classification. BioTechniques 29, 1264–1270 (2000)PubMedGoogle Scholar
  9. 9.
    Dai, J.J., Lieu, L., Rocke, D.: Dimension Reduction for Classification with Gene Expression Microarray Data. Stat. Appl. Genet. Mol. Biol. 5, 6 (2006)CrossRefGoogle Scholar
  10. 10.
    Furey, T., et al.: Support Vector Machine Classification and Validation of Cancer Tissue Samples using Microarray Expression Data. Bioinformatics 16, 906–914 (2000)CrossRefPubMedGoogle Scholar
  11. 11.
    Duda, R.O., Hart, P.E., Sork, D.G.: Pattern Classification. John Wiley & Sons, New York (2000)Google Scholar
  12. 12.
    Cover, T.M., Hart, P.E.: Nearest Neighbor Pattern Classification. IEEE Trans. Info. Theo. IT 13, 21–27 (1967)CrossRefGoogle Scholar
  13. 13.
    Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. J. Amer. Stat. Asso. 97, 77–87 (2002)CrossRefGoogle Scholar
  14. 14.
    Tibshirani, R.O., et al.: Diagnosis of Multiple Cancer Types by Shrunken Centroids of Gene Expression. Proc. Natl Acad. Sci. 99, 6567–6572 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tan, A.C., Naiman, D.Q., Xu, L., Winslow, R.L., Geman, D.: Simple Decision Rules for Classifying Human Cancers from Gene Expression Profiles. Bioinformatics 21, 3896–3904 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xu, L., Geman, D., Winslow, R.: Large-scale Integration of Cancer Microarray Data Identifies a Robust Common Cancer Signature. BMC Bioinformatics 8 (2007)Google Scholar
  17. 17.
    Geman, D., d’Avignon, C., Naiman, D.Q., Winslow, R.: Classifying Gene Expression Profiles from Pairwise mRNA Comparisons. Stat. Appl. Genet. Mol. Biol. 3, 19 (2004)CrossRefGoogle Scholar
  18. 18.
    Price, N.D., Trent, J., et al.: Highly Accurate Two-gene Classifier for Differentiating Gastrointestinal Stromal Tumors and Leiomyosarcomas. Proc. Natl Acad. Sci. 104, 3414–3419 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)CrossRefPubMedGoogle Scholar
  20. 20.
    Alon, U., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96, 6745–6750 (1998)CrossRefGoogle Scholar
  21. 21.
    Gordon, G.J., et al.: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 62, 4963–4967 (2002)PubMedGoogle Scholar
  22. 22.
    Shipp, M.A., et al.: Diffuse large B-cell lymphoma outcome prediction by geneexpression profiling and supervised machine learning. Nat. Med. 8, 68–74 (2002)CrossRefPubMedGoogle Scholar
  23. 23.
    Ramaswamy, S., et al.: Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. USA 98, 15149–15154 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pomeroy, S.L., et al.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002)CrossRefPubMedGoogle Scholar
  25. 25.
    Stuart, R.O., et al.: In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc. Natl Acad. Sci. USA 101, 615–620 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Miller, L.D., et al.: From The Cover: An Expression Signature for p53 Status in Human Breast Cancer Predicts Mutation Status, Transcriptional Effects, and Patient Survival. Proc. Natl. Acad. Sci. USA 102, 13550–13555 (2005)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Huaien Luo
    • 1
  • Yuliansa Sudibyo
    • 2
  • Lance D. Miller
    • 1
  • R. Krishna Murthy Karuturi
    • 1
  1. 1.Genome Institute of SingaporeSingapore
  2. 2.Nanyang Technological UniversitySingapore

Personalised recommendations