Identifying Non-random Patterns from Gene Expression Profiles

  • Radhakrishnan Nagarajan
  • Meenakshi Upreti
  • Mariofanna Milanova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5265)


There has been considerable interest in identifying biologically relevant genes from temporal microarray gene expression profiles using linear and nonlinear measures. The present study uses two distinct approaches namely: classical order zero-crossing count (ZCC) and Lempel-Ziv (LZ) complexity in identifying non-random patterns from temporal gene expression profiles. While the former captures the linear statistical properties of the time series such a power-spectrum, the latter has been used to capture nonlinear dynamical properties of gene expression profiles. The results presented elucidate that ZCC can perform better than LZ in identifying biologically relevant genes. The robustness of the findings are established on the given gene expression profiles as well as their noisy versions. The performance of these two techniques is demonstrated on publicly available yeast cell-cycle gene expression data. A possible explanation for the better performance of the ZCC over LZ complexity may be attributed to inherent cyclic patterns characteristic of the yeast cell-cycle experiment. Finally we discuss the biological relevance of new genes identified using ZCC not previously reported.


Gene expression Time series Zero-crossing count Lempel-Ziv complexity 


  1. 1.
    Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20(16), 2493–2503 (2004)CrossRefPubMedGoogle Scholar
  2. 2.
    Butte, A.: The use and analysis of microarray data. Nat. Rev. Drug Discov. 1(12), 951–960 (2002)CrossRefPubMedGoogle Scholar
  3. 3.
    Leng, X., Müller, H.G.: Classification using functional data analysis for temporal gene expression data. Bioinformatics 22(1), 68–76 (2006)CrossRefPubMedGoogle Scholar
  4. 4.
    Nagarajan, R., Aubin, J.E., Peterson, C.A.: Modeling genetic networks from clonal analysis. Journal of Theoretical Biology 230(3), 359–373 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    Kedem, B.: Time Series Analysis by Higher Order Crossings. IEEE Press, Los Alamitos (1994)Google Scholar
  6. 6.
    Lempel, A., Ziv, J.: On the Complexity of Finite Sequences. Information Theory, IEEE Transactions 22(1), 75–81 (1976)CrossRefGoogle Scholar
  7. 7.
    Kaspar, F., Schuster, H.G.: Easily calculable measure for the complexity of spatio-temporal patterns. Phys. Rev. A. 36, 842–848 (1987)CrossRefGoogle Scholar
  8. 8.
    Butte, A.J., Bao, L., Reis, B.Y., Watkins, T.W., Kohane, I.S.: Comparing the similarity of time-series gene expression using signal processing metrics. J. Biomed. Inform. 34(6), 396–405 (2001)CrossRefPubMedGoogle Scholar
  9. 9.
    Proakis, J.G., Manolakis, D.G.: Digital Signal Processing, Principles Algorithms and Applications. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  10. 10.
    Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes, 4th edn. McGraw-Hill, New York (2002)Google Scholar
  11. 11.
    Fuhrman, S., Cunningham, M.J., Wen, X., Zweiger, G., Seilhamer, J.J., Somogyi., J.: The Application of Shannon Entropy in the Identification of Putative Drug Targets. Biosystem 55(1-3), 5–14 (2000)CrossRefGoogle Scholar
  12. 12.
    Ahnert, S.E., Willbrand, K., Brown, F.C.S., Fink, T.M.A.: Unbiased pattern detection in microarray data series. Bioinformatics 22, 1471–1476 (2006)CrossRefPubMedGoogle Scholar
  13. 13.
    Simon, I., et al.: Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001)CrossRefPubMedGoogle Scholar
  14. 14.
    Spellman, P.T., et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Bio. Cell 9, 3273–3297 (1998)CrossRefGoogle Scholar
  15. 15.
    Shmulevich, I., Kauffman, S.A., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Nat. Acad. of Sci (USA) 102(38), 13439–13444 (2005)CrossRefGoogle Scholar
  16. 16.
    Nykter, M., Price, N.D., Aldana, M., Ramsey, S.A., Kauffman, S.A., Hood, L., Yli-Harja, O., Shmulevich, I.: Gene Expression Dynamics in the Macrophage Exhibit Criticality. Proc. Nat. Acad. of Sci (USA) 105(6), 1897–1900 (2008)CrossRefGoogle Scholar
  17. 17.
    Rasband, N.: Chaotic Dynamics of Nonlinear Systems. Wiley-Interscience, Chichester (1997)Google Scholar
  18. 18.
    Nagarajan, R.: Quantifying physiological data with Lempel-Ziv complexity - certain issues. IEEE Trans Biomed. Engg. 49(11), 1371–1372 (2002)CrossRefGoogle Scholar
  19. 19.
    Nagarajan, R., Szczepanski, J., Wajnryb, E.: Interpreting non-random signatures in biomedical signals with Lempel–Ziv complexity. Physica. D. 237(3), 359–364 (2008)CrossRefGoogle Scholar
  20. 20.
    Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer., J.D.: Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77–94 (1992)CrossRefGoogle Scholar
  21. 21.
    Schreiber, T., Schmitz, A.: Surrogate time series. Physica D 142, 346–382 (2000)CrossRefGoogle Scholar
  22. 22.
    Bean, J.M., et al.: High functional overlap between MluI cell-cycle box binding factor and Swi4/6 cell-cycle box binding factor in the G1/S transcriptional program in Saccharomyces cerevisiae. Genetics 171(1), 49–61 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Miyajima., I., et al.: GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which be involved in mating factor signal transduction. Cell 50(7), 1011–1019 (1987)CrossRefPubMedGoogle Scholar
  24. 24.
    Jorgensen, P., et al.: High-resolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants. Genetics 162, 1091–1099 (2002)PubMedPubMedCentralGoogle Scholar
  25. 25.
    Bogomolnaya, L.M., Pathak, R., Guo, J., Polymenis, M.: Roles of the RAM signaling network in cell cycle progression in Saccharomyces cerevisiae. Curr. Genet. 49(6), 384–392 (2006)CrossRefPubMedGoogle Scholar
  26. 26.
    de Lichtenberg, U., et al.: New weakly expressed cell cycle-regulated genes in yeast. Yeast 22(15), 1191–11201 (2005)CrossRefPubMedGoogle Scholar
  27. 27.
    Kemp, H.A., Sprague Jr., G.F.: Far3 and five interacting proteins prevent premature recovery from pheromone arrest in the budding yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 23(5), 1750–1763 (2003)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Radhakrishnan Nagarajan
    • 1
  • Meenakshi Upreti
    • 2
  • Mariofanna Milanova
    • 3
  1. 1.Department of BiostatisticsUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesUSA
  3. 3.Department of Computer SciencesUniversity of Arkansas at Little RockUSA

Personalised recommendations