On Finding and Interpreting Patterns in Gene Expression Data from Time Course Experiments

  • Yvonne E. Pittelkow
  • Susan R. Wilson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5265)


Microarrays are being widely used for studying gene activity throughout a cell cycle. A common aim is to find those genes that are expressed during specific phases in the cycle. The challenges lie in the extremely large number of genes being measured simultaneously, the relatively short length of the time course studied and the high level of noise in the data. Using a well-known yeast cell cycle data set, we compare a method being used for finding genes following a periodic time series pattern with a method for finding genes having a different phase pattern during the cell cycle. Application of two visualisation tools gives insight into the interpretation of the patterns for the genes selected by the two approaches. It is recommended that (i) more than a single approach be used for finding patterns in gene expression data from time course experiments, and (ii) visualisation be used simultaneously with computational and statistical methods to interpret as well as display these patterns.


False Discovery Rate Gene Expression Data Gene Point Cell Phase Visualisation Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kettenring, J.R.: The practice of cluster analysis. J. Classif. 23, 3–30 (2006)CrossRefGoogle Scholar
  2. 2.
    Kettenring, J.R.: A perspective on cluster analysis. Stat. Anal. Data Mining, 52–53 (2008)Google Scholar
  3. 3.
    de Lichtenberg, U., Jensen, L.J., Fausboll, A., Jensen, T.S., Bork, P., Brunak, S.: Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics 21, 1164–1171 (2005)CrossRefPubMedGoogle Scholar
  4. 4.
    Tamayo, P., Slonim, D.S., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting patterns of gene expression with self-organising maps: Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. 96, 2907–2912 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yeung, K.Y., Ruzzo, W.L.: Principal component analysis for clustering gene expression data. Bioinformatics 17, 763–774 (2001)CrossRefPubMedGoogle Scholar
  6. 6.
    Johansson, D., Lindgren, P., Berglund, A.: A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription. Bioinformatics 19, 467–473 (2003)CrossRefPubMedGoogle Scholar
  7. 7.
    Wichert, S., Fokianos, K., Strimmer, K.: Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 20, 5–20 (2004)CrossRefPubMedGoogle Scholar
  8. 8.
    Liew, A.W.-C., Xian, J., Wu, S., Smith, D., Yan, H.: Spectral estimation in unevenly sampled space of periodically expressed microarray time series data. BMC Bioinformatics 8, 137 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pittelkow, Y.E., Wilson, S.R.: h-Profile plots for the discovery and exploration of patterns in gene expression data with an application to time course data. BMC Bioinformatics 8, 486 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pittelkow, Y.E., Rosche, E., Wilson, S.R.: Interpreting models in gene expression data. In: Francis, A.R., Matawie, K.M., Oshlack, A., Smyth, G.K. (eds.) Statistical Solutions to Modern Problems: Proceedings of the 20th International Workshop on Statistical Modelling, Sydney 2005, pp. 381–391 (2005)Google Scholar
  11. 11.
    Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle including control of mRNA transcription. Molecular Cell 2, 65–73 (1998)CrossRefPubMedGoogle Scholar
  12. 12.
    Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer, New York (1991)CrossRefGoogle Scholar
  13. 13.
    Ahdesmäki, M., Lähdesmäki., H., Pearson, R., Huttunen, H., Yli-Harja, O.: Robust detection of periodic time series measured from biological systems. BMC Bioinformatics 6, 117 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pittelkow, Y.E., Wilson, S.R.: Visualisation of gene expression data - the GE-biplot, the Chip-plot and the Gene-plot. Stat. Appl. Genet. Mol. Biol. 2, 6 (2003)CrossRefGoogle Scholar
  15. 15.
    Chen, J.: Identification of significant periodic genes in microarray gene expression data. BMC Bioinformatics 6, 286 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
  17. 17.
    Everitt, B.S.: Time Series. In: Armitage, P., Colton, T. (eds.) Encyclopedia of Biostatistics, 2nd edn., pp. 5451–5454. Wiley, Chichester (2005)Google Scholar
  18. 18.
    R source code for GE-biplot,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yvonne E. Pittelkow
    • 1
  • Susan R. Wilson
    • 1
  1. 1.Mathematical Sciences InstituteAustralian National UniversityCanberra ACTAustralia

Personalised recommendations