An Interpretation of Belief Functions on Infinite Universes in the Theory of Rough Sets

  • Wei-Zhi Wu
  • Ju-Sheng Mi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5306)


A general type of belief structure and its inducing dual pair of belief and plausibility functions on infinite universes of discourse are first defined. Relationship between belief and plausibility functions in Dempser-Shafer theory of evidence and the lower and upper approximations in rough set theory is then established. It is shown that the probabilities of lower and upper approximations induced by an approximation space yield a dual pair of belief and plausibility functions. And for any belief structure there must exist a probability approximation space such that the belief and plausibility functions defined by the given belief structure are just respectively the lower and upper probabilities induced by the approximation space. Finally, essential properties of the belief and plausibility functions are examined. The belief and plausibility functions are respective a monotone Choquet capacity and an alternating Choquet capacity of infinite order.


Approximation operators Belief functions Belief structures Rough sets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Choquet, G.: Theory of capacities. Annales de l’institut Fourier 5, 131–295 (1954)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Grzymala-Busse, J.W.: Rough-set and Dempster-Shafer approaches to knowledge acquisition under uncertainty—a comparison, Dept. Computer Science, University of Kansas, Lawrence, KS (unpublished manuscript, 1987)Google Scholar
  4. 4.
    Klopotek, M.A., Wierzchon, S.T.: A new qualitative rough-set approach to modeling belief function. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 346–353. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Kondo, M.: Algebraic approach to generalized rough sets. In: Slezak, D., Yao, J.T., Peters, J.F., Ziarko, W., Yao, Y.Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 132–140. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Lin, T.Y.: Granular computing on binary relations II: rough set representations and belief functions. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery: 1. Methodolodgy and Applications, pp. 122–140. Physica, Heidelberg (1998)Google Scholar
  7. 7.
    Lingras, P.J., Yao, Y.Y.: Data mining using extensions of the rough set model. Journal of the American Society for Information Science 49, 415–422 (1998)CrossRefGoogle Scholar
  8. 8.
    Nguyen, H.T.: On random sets and belief functions. Journal of Mathematical Analysis and Applications 65, 531–542 (1978)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)CrossRefMATHGoogle Scholar
  10. 10.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)MATHGoogle Scholar
  11. 11.
    Skowron, A.: The relationship between the rough set theory and evidence theory. Bulletin of Polish Academic of Sciences: Mathematics 37, 87–90 (1989)Google Scholar
  12. 12.
    Skowron, A.: The rough sets theory and evidence theory. Fundamenta Informatica XIII, 245–262 (1990)MathSciNetMATHGoogle Scholar
  13. 13.
    Skowron, A., Grzymala-Busse, J.: From rough set theory to evidence theory. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 193–236. Wiley, New York (1994)Google Scholar
  14. 14.
    Wu, W.-Z.: Attribute reduction based on evidence theory in incomplete decision systems. Information Sciences 178, 1355–1371 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Wu, W.-Z., Leung, Y., Zhang, W.-X.: Connections between rough set theory and Dempster-Shafer theory of evidence. International Journal of General Systems 31, 405–430 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Wu, W.-Z., Zhang, M., Li, H.-Z., Mi, J.-S.: Knowledge reduction in random information systems via Dempster-Shafer theory of evidence. Information Sciences 174, 143–164 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yao, Y.Y.: Generalized rough set model. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1. Methodology and Applications, pp. 286–318. Physica, Heidelberg (1998)Google Scholar
  18. 18.
    Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yao, Y.Y., Lingras, P.J.: Interpretations of belief functions in the theory of rough sets. Information Sciences 104, 81–106 (1998)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Zhang, M., Xu, L.D., Zhang, W.-X., Li, H.-Z.: A rough set approach to knowledge reduction based on inclusion degree and evidence reasoning theory. Expert Systems 20, 298–304 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Wei-Zhi Wu
    • 1
  • Ju-Sheng Mi
    • 2
  1. 1.School of Mathematics, Physics and Information ScienceZhejiang Ocean University, ZhoushanZhejiangP.R. China
  2. 2.College of Mathematics and Information ScienceHebei Normal University, ShijiazhuangHebeiP.R. China

Personalised recommendations