An Equivalent Definition of Rough Sets

  • Guilong Liu
  • James Kuodo Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5306)

Abstract

Using characteristic function of sets, this paper proposes the concept of linear mappings for the power sets of universal sets. Through this concept, we explain rough set upper approximation as a linear mapping and study the linear properties of rough sets. The relationship between the linear mappings and the upper approximations is established. The results and methods given in this paper will hopefully simplify the theoretical and practical researches of rough sets.

Keywords

Rough sets Binary relations Approximations Composition of relations Characteristic functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grassmann, W.K., Tremblay, J.P.: Logical and discrete mathematics, A computer science perspective. Prentice-Hall, Inc., Englewood Cliffs (1996)Google Scholar
  2. 2.
    Kondo, M.: Algebraic approach to generalized rough sets. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 132–140. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Kondo, M.: On the structure of generalized rough sets. Information Sciences 176, 589–600 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Liu, G.L.: Rough sets over the Boolean algebras. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 124–131. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Liu, G.L.: The axiomatization of the rough set upper approximation operations. Fundamenta Informaticae 69, 331–342 (2006)MathSciNetMATHGoogle Scholar
  6. 6.
    Liu, G.L.: Generalized rough sets over fuzzy lattices. Information Sciences 178, 1651–1662 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Liu, G.L.: Axiomatic Systems for Rough Sets and Fuzzy Rough Sets. International Journal of Approximate Reasoning 48, 857–867 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough sets: Theoretical aspects of reasoning about data. Kluwer Academic Publishers, Boston (1991)CrossRefMATHGoogle Scholar
  10. 10.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177(1), 28–40 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Information Sciences 177(1), 41–73 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Pei, D., Xu, Z.: Transformation of rough set models. Knowledge-Based Systems 20, 745–751 (2007)CrossRefGoogle Scholar
  14. 14.
    Qi, G., Liu, W.: Rough operations on Boolean algebras. Information Sciences 173, 49–63 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Radzikowska, A.M., Kerre, E.E.: Fuzzy rough sets based on residuated lattices. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 278–296. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)MathSciNetMATHGoogle Scholar
  17. 17.
    Slowinski, R., Vanderpooten, D.: A Generalized Definition of Rough Approximations Based on Similarity. IEEE Trans. On Knowledge and Data Engineering 12(2), 331–336 (1990)CrossRefGoogle Scholar
  18. 18.
    Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning 15, 291–317 (1996)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111(1–4), 239–259 (1998)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Yao, Y.Y.: Constructive and algebraic methods of theory of rough sets. Information Sciences 109, 21–47 (1998)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logic. Intelligent Automation and Soft Computing, An International Journal 2, 103–120 (1996)CrossRefGoogle Scholar
  22. 22.
    Zhang, H., Liang, H., Liu, D.: Two new operators in rough set theory with applications to fuzzy sets. Information Sciences 166(1–4), 147–165 (2004)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guilong Liu
    • 1
  • James Kuodo Huang
    • 2
  1. 1.School of Information ScienceBeijing Language and Culture UniversityBeijingChina
  2. 2.Association of International Uncertainty ComputingAlhambraUSA

Personalised recommendations