Action Rules Discovery without Pre-existing Classification Rules

  • Zbigniew W. Raś
  • Agnieszka Dardzińska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5306)


Action rules describe possible transitions of objects from one state to another with respect to a distinguished attribute. Previous research on action rule discovery usually requires the extraction of classification rules before constructing any action rule. In this paper, we present a new algorithm that discovers action rules directly from a decision system. It is a bottom-up strategy which has some similarity to systems ERID and LERS. Finally, it is shown how to manipulate the music score using action rules.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithm for mining association rules. In: Proceeding of the Twentieth International Conference on VLDB, pp. 487–499 (1994)Google Scholar
  2. 2.
    Dardzińska, A., Raś, Z.: Extracting rules from incomplete decision systems. In: Foundations and Novel Approaches in Data Mining, Studies in Computational Intelligence, vol. 9, pp. 143–154. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Greco, S., Matarazzo, B., Pappalardo, N., Slowiński, R.: Measuring expected effects of interventions based on decision rules. J. Exp. Theor. Artif. Intell. 17(1-2), 103–118 (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Grzymala-Busse, J.: A new version of the rule induction system LERS. Fundamenta Informaticae 31(1), 27–39 (1997)zbMATHGoogle Scholar
  5. 5.
    He, Z., Xu, X., Deng, S., Ma, R.: Mining action rules from scratch. Expert Systems with Applications 29(3), 691–699 (2005)CrossRefGoogle Scholar
  6. 6.
    Im, S., Ras, Z.W.: Action rule extraction from a decision table: ARED. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 160–168. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Lewis, R., Ras, Z.W.: Rules for processing and manipulating scalar music theory. In: Proceedings of the International Conference on Multimedia and Ubiquitous Engineering (MUE 2007), Seoul, South Korea, April 26-28, 2007, pp. 819–824. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  8. 8.
    Lewis, R., Jiang, W., Ras, Z.W.: Mining scalar representations in a non-tagged music database. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 445–454. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Pawlak, Z.: Information systems - theoretical foundations. Information Systems Journal 6, 205–218 (1981)CrossRefzbMATHGoogle Scholar
  10. 10.
    Qiao, Y., Zhong, K., Wang, H.-A., Li, X.: Developing event-condition-action rules in real-time active database. In: Proceedings of the 2007 ACM symposium on Applied computing, pp. 511–516. ACM, New York (2007)CrossRefGoogle Scholar
  11. 11.
    Ras, Z.W., Zhang, X., Lewis, R.: MIRAI: Multi-hierarchical, FS-tree based music information retrieval system. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 80–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Raś, Z.W., Dardzińska, A.: Action rules discovery, a new simplified strategy. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 445–453. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Raś, Z.W., Wieczorkowska, A.: Action-Rules: How to increase profit of a company. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 587–592. Springer, Heidelberg (2000)Google Scholar
  14. 14.
    Raś, Z., Wyrzykowska, E., Wasyluk, H.: ARAS: Action rules discovery based on agglomerative strategy, in Mining Complex Data. In: Raś, Z.W., Tsumoto, S., Zighed, D.A. (eds.) MCD 2007. LNCS (LNAI), vol. 4944, pp. 196–208. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Tsay, L.-S., Ras, Z.W.: Discovering the concise set of actionable patterns. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 169–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Tzacheva, A., Ras, Z.W.: Constraint based action rule discovery with single classification rules. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 322–329. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Zbigniew W. Raś
    • 1
    • 2
  • Agnieszka Dardzińska
    • 1
    • 3
  1. 1.Dept. of Computer ScienceUniv. of North CarolinaCharlotteUSA
  2. 2.Institute of Computer SciencePolish Academy of SciencesWarsawPoland
  3. 3.Dept. of Computer ScienceBialystok Technical Univ.BialystokPoland

Personalised recommendations