Computing Approximations of Dominance-Based Rough Sets by Bit-Vector Encodings

  • Chien-Chung Chan
  • Gwo-Hshiung Tzeng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5306)

Abstract

This paper introduces a mechanism for computing approximations of Dominance-Based Rough Sets (DBRS) by bit-vector encodings. DBRS was introduced by Greco et al. as an extension of Pawlak’s classical rough sets theory by using dominance relations in place of equivalence relations for approximating sets of preference ordered decision classes. Our formulation of dominance-based approximation spaces is based on the concept of indexed blocks introduced by Chan and Tzeng. Indexed blocks are sets of objects indexed by pairs of decision values where approximations of sets of decision classes are defined in terms of exclusive neighborhoods of indexed blocks. In this work, we introduced an algorithm for updating indexed blocks incrementally, and we show that the computing of dominance-based approximations can be accomplished more intuitively and efficiently by encoding indexed blocks as bit-vectors. In addition, bit-vector encodings can simplify the definitions of lower and upper approximations greatly. Examples are given to illustrate presented concepts.

Keywords

Rough sets Dominance-based rough sets Multiple criteria decision analysis (MCDA) Approximate reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough approximation of a preference relation by dominance relations, ICS Research Report 16/96, Warsaw University of Technology, Warsaw. European Journal of Operational Research 117(1), 63–83 (1999)CrossRefMATHGoogle Scholar
  2. 2.
    Greco, S., Matarazzo, B., Slowinski, R.: A new rough set approach to evaluation of bankruptcy risk. In: Zopounidis, C. (ed.) Operational Tools in the Management of Financial Risks, pp. 121–136. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  3. 3.
    Greco, S., Matarazzo, B., Slowinski, R.: The use of rough sets and fuzzy sets in MCDM. In: Gal, T., Stewart, T., Hanne, T. (eds.) Advances in Multiple Criteria Decisions Making, ch. 14, pp. 14.1–14.59. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  4. 4.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European Journal of Operational Research 138(2), 247–259 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Greco, S., Matarazzo, B., Slowinski, R., Stefanowski, J.: An algorithm for induction of decision rules consistent with the dominance principle. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 304–313. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Greco, S., Matarazzo, B., Slowinski, R., Stefanowski, J., Zurawski, M.: Incremental versus non-incremental rule induction for multicriteria classification. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 33–53. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Pawlak, Z.: Rough sets: basic notion. International Journal of Computer and Information Science 11(15), 344–356 (1982)Google Scholar
  9. 9.
    Pawlak, Z.: Rough sets and decision tables. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 186–196. Springer, Heidelberg (1985)Google Scholar
  10. 10.
    Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough sets. Communication of ACM 38(11), 89–95 (1995)CrossRefGoogle Scholar
  11. 11.
    Roy, B.: Methodologie Multicritere d’Aide a la Decision. Economica, Paris (1985)Google Scholar
  12. 12.
    Fan, T.F., Liu, D.R., Tzeng, G.H.: Rough set-based logics for multicriteria decision analysis. European Journal of Operational Research 182(1), 340–355 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chan, C.-C., Tzeng, G.-H.: Dominance-based rough sets using indexed blocks as granules. In: Wang, G., Li, T., Grzymała-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 244–251. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Chien-Chung Chan
    • 1
    • 2
  • Gwo-Hshiung Tzeng
    • 3
    • 4
  1. 1.Department of Computer ScienceUniversity of AkronAkronUSA
  2. 2.Department of Information Science and ApplicationsAsia UniversityWufengTaiwan
  3. 3.Department of Business and Entrepreneurial AdministrationKainan UniversityLuchuTaiwan
  4. 4.Institute of Management of TechnologyNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations