Rough Set Approach to Information Tables with Imprecise Decisions

  • Masahiro Inuiguchi
  • Bingjun Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5306)

Abstract

In this paper, we treat information tables with imprecise decisions, for short, imprecise decision tables. In the imprecise decision tables, decision attribute values are specified imprecisely. Under such decision tables, lower and upper object sets for a set of decision attribute values are defined. Their properties are shown. Concepts of reducts of imprecise decision tables are studied. Discernibility matrix methods are investigated for calculations of all reducts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dubois, D., Prade, H.: Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence 4, 244–264 (1988)CrossRefGoogle Scholar
  2. 2.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough set theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Inuiguchi, M.: Generalization of rough sets and rule extraction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 96–119. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Inuiguchi, M.: Attribute reduction in variable precision rough set model. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 14, 461–479 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Inuiguchi, M.: Structure-based attribute reduction in variable precision rough set models. Journal of Advanced Computational Intelligence and Intelligent Informatics 10, 657–665 (2006)CrossRefGoogle Scholar
  6. 6.
    Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information Sciences 112, 39–49 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Lipski, W.: On semantic issues connected with incomplete information databases. ACM Transactions on Database Systems 4(3), 262–296 (1979)CrossRefGoogle Scholar
  8. 8.
    Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theoretical Computer Science 29, 27–39 (1984)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough sets. International Journal of Information and Computer Sciences 11, 341–356 (1982)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Skowron, A., Rauser, C.M.: The discernibility matrix and functions in information systems. In: Słowinski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)CrossRefGoogle Scholar
  11. 11.
    Słowiński, R., Vanderpooten, D.: A Generalized Definition of Rough Approximations Based on Similarity. IEEE Transactions on Data and Knowledge Engineering 12(2), 331–336 (2000)CrossRefGoogle Scholar
  12. 12.
    Yao, Y.Y., Lin, T.Y.: Generalization of Rough Sets Using Modal Logics. Intelligent Automation and Soft Computing 2(2), 103–120 (1996)CrossRefGoogle Scholar
  13. 13.
    Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Masahiro Inuiguchi
    • 1
  • Bingjun Li
    • 2
  1. 1.Graduate School of Engineering ScienceOsaka University, ToyonakaOsakaJapan
  2. 2.College of Information and Management ScienceHenan Agricultural UniversityZhengzhouChina

Personalised recommendations