On Rough Equalities and Rough Equivalences of Sets

  • Bala Krushna Tripathy
  • Anirban Mitra
  • Jaladhar Ojha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5306)

Abstract

The different types of rough equalities [4,5,6] of sets deal with approximate equalities of sets which may not be equal in the usual sense of classical set theory. In this article, we make further study of the properties of rough equalities. A more general kind of equality of sets (we call it rough equivalence) shall be introduced, which captures equalities of sets at a higher level than rough equalities. Many properties of this new notion and its comparison with rough equalities shall be dealt with. We shall make use of the concepts of rough inclusions of sets in this sequel.

Keywords

bottom R-equal top R-equal R-equal bottom R-equivalent top R-equivalent and R-equivalent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banerjee, M., Chakraborty, M.K.: Rough Consequence and Rough Algebra in Rough Sets. In: Ziarko, W.P. (ed.) Fuzzy Sets and Knowledge Discovery, Proc. Int. Workshop on Rough Sets and Knowledge Discovery (RSKD 1993), Banf, Canada, pp. 196–207. Springer, London (1994)CrossRefGoogle Scholar
  2. 2.
    Bonikowski, Z.: A Certain Conception of the Calculus of Rough sets. Notre Dame Journal of Formal Logic 33, 412–421 (1992)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chakraborty, M.K., Banerjee, M.: Rough Dialogue and Implication Lattices. Fundamenta Informetica 75(1-4), 123–139 (2007)MathSciNetMATHGoogle Scholar
  4. 4.
    Novotny, M., Pawlak, Z.: Characterization of Rough Top equalities and Rough Bottom Equalities. Bullten of Polish Academy of Scieces and Math 33, 91–97 (1985)MathSciNetMATHGoogle Scholar
  5. 5.
    Novotny, M., Pawlak, Z.: On Rough Equalities. Bulliten of Polish Academy of Sciences and Math. 33, 99–104 (1985)MathSciNetMATHGoogle Scholar
  6. 6.
    Novotny, M., Pawlak, Z.: Black Box Analysis and Rough Top Equality. Bulliten of Polish Academy of Sciences and Math. 33, 105–113 (1985)MathSciNetMATHGoogle Scholar
  7. 7.
    Pawlak, Z.: Rough Sets. Int. Jour. Of Info. and Computer Sc. 11, 341–356 (1982)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Pawlak, Z.: Rough Sets, Theoretical aspect of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)MATHGoogle Scholar
  9. 9.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences - An International Journal 177(1), 3–27 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences - An International Journal 177(1), 28–40 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Information Sciences - An International Journal 177(1), 41–73 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Tripathy, B.K., Mitra, A.: Topological Properties of Rough Sets and Applications. Communicated to International Journal of Granular Computing, Rough Sets and Intellegent SystemsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bala Krushna Tripathy
    • 1
  • Anirban Mitra
    • 2
  • Jaladhar Ojha
    • 3
  1. 1.School of Computing SciencesV.I.T. UniversityVelloreIndia
  2. 2.Department of Computer ScienceBerhampur UniversityBerhampurIndia
  3. 3.Department of MathematicsKhallikote CollegeBerhampurIndia

Personalised recommendations