Skip to main content

Membranes with Phospholipid Analogous Surfaces

  • Chapter
Surface Engineering of Polymer Membranes

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 1791 Accesses

Abstract

Since phospholipids, a major component of the outside surface of a biomembrane, were demonstrated to be non-thrombogenic, much attention has been devoted to the use of phospholipid analogous polymers for surface modification in order to improve the biocompatibility of biomaterials with biological systems. In this chapter a variety of approaches for the synthesis of different phospholipid analogous polymers and the surface modification of a polymeric membrane with these phospholipid-containing polymers are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhtar S, Hawes C, Dudley I, Reed I, Stratford P (1995) Coatings reduce the fouling of microfiltration membranes. J Membrane Sci 107:209–218

    Article  CAS  Google Scholar 

  • Araki K, Konno R, Seno M (1984) Gas-permeability of phosphatidylcholine impregnated in a porous cellulose nitrate membrane. J Membrane Sci 17: 89–95

    Article  CAS  Google Scholar 

  • Billimoria JD, Lewis KO (1968) The synthesis of phospholipids. Part I. Phosphatidyl and lysophosphatidyl ethanolamines. J Chem Soc C 1404–1412

    Google Scholar 

  • Bird R, Hall B, Chapman D, Hobbs KEF (1988) Material thrombelastography: An assessment of phosphorylcholine compounds as models for biomaterials. thromb Res 51:471–4483

    Article  CAS  Google Scholar 

  • Black J (1992) Biological performance of materials. Marcel Dekker, Inc., New York 206–208

    Google Scholar 

  • Dai QW, Xu ZK, Wu J (2004) A novel approach for the surface modification of polymeric membrane with phospholipid polymer. Chinese Chem Lett 15:993–996

    CAS  Google Scholar 

  • Elliott JT, Burden DL, Woodward JT, Sehgal A, Douglas JF (2003) Phospholipid monolayers supported on spun cast polystyrene films. Langmuir 19:2275–2283

    Article  CAS  Google Scholar 

  • Feng W, Brash J, Zhu SP (2004) Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces. J Polym Sci Part A: Polym Chem 42:2931–2942

    Article  CAS  Google Scholar 

  • Furukawa A, Nakaya T, Imoto M (1986) Polymeric phospholipid analogs. 19. synthesis and polymerization of 10-(11-methacryloyloxyundecyloxycarbonyl)decyl-2-(trimethylammonio) ethyl phosphate. Makromol Chem 187:311–316

    Article  CAS  Google Scholar 

  • Hasegawa E, Matsushita Y, Eshima K, Nishide N, Tsuchida E (1984) Synthesis of novel styrene groups containing glycerophosphocholines and their polymerization as liposomes. Makromol Chem Rapid Commun 5:779–784

    Article  CAS  Google Scholar 

  • Huang XJ, Huang XD, Che AF, Xu ZK, Yao K (2006a) Suppression of cell adhesion on polyacrylonitrile-based membranes by the anchoring of phospholipid moieties. Chinese J Polym Sci 24:103–106

    Article  CAS  Google Scholar 

  • Huang XJ, Xu ZK, Huang XD, Wang ZG, Yao K (2006b) Biomimetic surface modification on polyacrylonitrile-based asymmetric membranes via direct formation of phospholipid moieties. Polymer 47:3141–3149

    Article  CAS  Google Scholar 

  • Huang XJ, Xu ZK, Wan LS, Wang ZG, Wang JL (2005) Surface modification of polyacrylonitrile-based membranes by chemical reactions to generate phospholipid moieties. Langmuir 21:2941–2947

    Article  CAS  Google Scholar 

  • Inaishi K, Nakaya T, Imoto M (1975) Synthesis and polymerization of 10-[bis(benzyloxy) phosphoryloxy]decyl methacrylate. Makromol Chem 176:2473–2478

    Article  CAS  Google Scholar 

  • Ishihara K, Fukumoto K, Iwasaki Y, Nakabayashi N (1999a) Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization. Biomaterials 20:1545–1551

    Article  CAS  Google Scholar 

  • Ishihara K, Fukumoto K, Iwasaki Y, Nakabayashi N (1999b) Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials 20:1553–1559

    Article  CAS  Google Scholar 

  • Ishihara K, Iwasaki Y, Ebihara S, Shindo Y, Nakabayashi N (2000) Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloid Surface B 18:325–335

    Article  CAS  Google Scholar 

  • Ishihara K, Nishiuchi D, Watanabe J, Iwasaki Y (2001) Polyethylene/phospholipid polymer alloy as an alternative to poly(vinylchloride)-based materials. Biomaterials 25:1115–1122

    Article  Google Scholar 

  • Ito T, Iwasaki Y, Narita T, Akiyoshi K, Ishihara K (2003) Controlled adhesion of human lymphocytes on electrically charged polymer surface having phosphorylcholine moiety. Sci Technol Adv Mat 4:99–104

    Article  CAS  Google Scholar 

  • Iwasaki Y, Ishihara K, Nakabayashi N, Khang G, Jeon JH, Lee JW, Lee HB (1998) Platelet adhesion on the gradient surfaces grafted with phospholipid polymer. J Biomat Sci-Polym E 9:801–816

    Article  CAS  Google Scholar 

  • Iwasaki Y, Sawada S, Nakabayashi N, Khang G, Lee HB, Ishihara K (1999) The effect of the chemical structure of the phospholipid polymer on fibrouectin adsorption and fibroblast adhesion on the gradient phospholipid surface. Biomaterials 20:2185–2191

    Article  CAS  Google Scholar 

  • Iwasaki Y, Shimakata K, Morimoto N, Kurita K (2003) Hydrogel-like elastic membrane consisting of semi-interpenetrating polymer networks based on a phosphorylcholine polymer and a segmented polyurethane. J Polym Sci Part A: Polym Chem 41:68–75

    Article  CAS  Google Scholar 

  • Iwasaki Y, Uchiyama S, Kurita K, Morimoto N, Nakabayashi N (2002) A non-thrombogenic gas-permeable membrane composed of a phospholipid polymer skin film adhered to a polyethylene porous membrane. Biomaterials 23:3421–3427

    Article  CAS  Google Scholar 

  • Khang G, Choi MK, Rhee JM, Lee SJ, Lee HB, Iwasaki Y, Nakabayashi N, Ishihara K (2001) Blocompatibility of poly(MPC-co-EHMA)/poly(L-lactide-co-glycolide) blends. Korea Polym J 9:107–115

    CAS  Google Scholar 

  • Kimura T, Nakaya T, Imoto M (1975) Synthesis and polymerization of benzyl 2-(methacryloyloxy) ethyl hydrogen phosphate. Makromol Chem 176:1945–1951

    Article  CAS  Google Scholar 

  • Kimura T, Nakaya T, Imoto M (1976) Synthesis of polymers containing phosphoric ester. Makromol Chem 177:1235–1241

    Article  CAS  Google Scholar 

  • Korematsu A, Takemoto Y, Nakaya T, Inoue H (2002) Synthesis, characterization and platelet adhesion of segmented polyurethanes grafted phospholipid analogous vinyl monomer on surface. Biomaterials 23:263–271

    Article  CAS  Google Scholar 

  • Kusumi A, Singh M, Tirrell DA, Oehme G, Singh A, Samuel NKP, Hyde JS, Regen SL (1983) Dynamic and structural properties of polymerized phosphatidylcholine vesicle membranes. J Am Chem Soc 105:2975–2980

    Article  CAS  Google Scholar 

  • Liu JH, Jen HL, Chung YC (1999) Surface modification of polyethylene membranes using phosphorylcholine derivatives and their platelet compatibility. J Appl Polym Sci 74:2947–2954

    Article  CAS  Google Scholar 

  • Lu JR, Murphy EF, Su TJ, Lewis AL, Stratford PW, Satija SK (2001) Reduced protein adsorption on the surface of a chemically grafted phospholipid monolayer. Langmuir 17:3382–3389

    Article  CAS  Google Scholar 

  • Luo GB, Liu TT, Zhao XS, Huang YY, Huang CH, Cao WX (2001) Investigation of polymer-cushioned phospholipid bilayers in the solid phase by atomic force microscopy. Langmuir 17:4074–4080

    Article  CAS  Google Scholar 

  • Michel M, Vautier D, Voegel JC, Schaaf P, Ball V (2004) Layer by layer self-assembled polyelectrolyte multilayers with embedded phospholipid vesicles. Langmuir 20:4835–4839.

    Article  CAS  Google Scholar 

  • Marra KG, Kidani DDA, Chaikof EL (1997) Cytomimetic biomaterials. 2. In situ polymerization of phospholipids on a polymer surface. Langmuir 13:5697–5701

    Article  CAS  Google Scholar 

  • Morimoto N, Iwasaki Y, Nakabayashi N, Ishihara K (2002) Physical properties and blood compatibility of surface-modified segmented polyurethane by semi-interpenetrating polymer networks with a phospholipid polymer. Biomaterials 23:4881–4887

    Article  CAS  Google Scholar 

  • Nakai S, Nakaya T, Imoto M (1977) Polymeric phospholipid analog. 10. synthesis and polymerization of 2-(methacryloyloxy)ethyl 2-aminoethyl hydrogen phosphate. Makromol Chem 178:2963–2967

    Article  CAS  Google Scholar 

  • Nakai S, Nakaya T, Imoto M (1978) Polymeric phospholipid analogs. 11. synthesis and polymerization of 2-aminoethyl 2-(p-methacryloyloxybenzoyloxy)ethyl hydrogen phosphate. Makromol Chem 179:2349–2353

    Article  CAS  Google Scholar 

  • Nakaya T, Kurio H, Imoto M, Sugiyama K (1989) Polymeric phospholipid analogs. 29. synthesis and polymerization of 2-(methacryloyloxy)ethyl dipalmitoyl-DL-alpha-phosphatidylethanol-amide. Polym J 21:929–935

    Article  CAS  Google Scholar 

  • Nakaya T, Shoji H, Imoto M (1988) Polymeric phospholipid analogs. 22. a synthetic polypeptide with phospholipid analogs. J Macromol Sci A 25:115–119

    Article  Google Scholar 

  • Nakaya T, Toyoda H, Imoto M (1986) Polymeric phospholipid analogs. 13. synthesis and properties of vinyl-polymers containing phosphatidyl choline groups. Polym J 18:881–886

    Article  CAS  Google Scholar 

  • Nakaya T, Yamada M, Shibata K, Imoto M, Tsuchiya H, Okuno M, Nakaya S, Ohno S, Matsuyama T, Yamaoka H (1990) Polymerized phospholipid langmuir-blodgett multilayer films. Langmuir 6:291–293

    Article  CAS  Google Scholar 

  • Nakaya T, Yasuzawa M, Imoto M (1989) Poly(phosphatidylcholine) analogs. Macromolecules 22:3180–3181

    Article  CAS  Google Scholar 

  • Nakaya T, Yasuzawa M, Imoto M (1994) Synthesis and polymerization of 2-((2-methacryloyloxy)-ethyldimethylammonio)ethyl p-substituted phenyl phosphates. J Macromol Sci A 31:207–215

    Google Scholar 

  • Naumann CA, Prucker O, Lehmann T, Ruhe J, Knoll W, Frank CW (2002) The polymer-supported phospholipid bilayer: Tethering as a new approach to substrate-membrane stabilization. Biomacromolecules 3:27–35

    Article  CAS  Google Scholar 

  • Orban JM, Faucher KM, Dluhy RA, Chaikof EL (2000) Cytomimetic biomaterials. 4. In situ photopolymerization of phospholipids on an alkylated surface. Macromolecules 33:4205–4212

    Article  CAS  Google Scholar 

  • Regen SL, Kirszensztejn P, Singh A (1983) Polymer-supported membranes—A new approach for modifying polymer surfaces. Macromolecules 16:335–338

    Article  CAS  Google Scholar 

  • Regen SL, Singh A, Oehme G, Singh M (1982) Polymerized phosphatidylcholine vesicles. Synthesis and characterization. J Am Chem Soc 104:791–795

    Article  CAS  Google Scholar 

  • Sawada SI, Iwasaki Y, Nakabayashi N, Ishihara K (2006) Stress response of adherent cells on a polymer blend surface composed of a segmented polyurethane and MPC copolymers. J Biomed Mater Res A 79A:476–484

    Article  CAS  Google Scholar 

  • Seo YH, Li YJ, Nakaya T (1995) Preparation and polymerization of 2-(acryloyloxy) ethyl-2-(trimethylammonium) ethyl phosphate and 4-(acryloyloxy) butyl-2-(trimethyl-ammonium) ethyl phosphate. J Macromol Sci A 32:999–1006

    Article  Google Scholar 

  • Shindo Y, Kozaki M, Fukumoto K, Ishihara K (2004) Properties of blend polymers composed of phospholipid polymer and photocrosslinkable PVA. J Photopolym Sci Technol 17:75–76

    Article  CAS  Google Scholar 

  • Shindo Y, Setoguchi T, Fukumoto K, Ishihara K, Adachi D, Inoue K (2003) Properties of blend films composed of phospholipid polymer and photocrosslinkable PVA. J Photopolym Sci Technol 16:217–218

    Article  CAS  Google Scholar 

  • Singer SJ, Micolson GL (1980) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  Google Scholar 

  • Sugiyama K, Kato K, Kido M, Shiraishi K, Ohga K, Okada K (1998) Grafting of vinyl monomers on the surface of a poly(ethylene terephthalate) film using Ar plasma-post polymerization technique to increase biocompatibility. Macromol Chem Phys 199:1201–1208

    Article  CAS  Google Scholar 

  • Sugiyama K, Nakaya T (1986) Synthesis and properties of polyionenes containing aza-crown ethers and phosphatidylcholine analog moieties. Makromol Chem Rapid Commun 7:679–685

    Article  CAS  Google Scholar 

  • Thanh TN, Chabrier P (1974) New method of preparation for phosphorylcholine, phosphorylhomocholine and their derivatives. Bull Soc Chem Fr 3–4:667–671

    Google Scholar 

  • Ueda H, Watanabe J, Konno T, Takai M, Saito A, Ishihara K (2006) Asymmetrically functional surface properties on biocompatible phospholipid polymer membrane for bioartificial kidney. J Biomed Mater Res A 77A:19–27

    Article  CAS  Google Scholar 

  • Umeda T, Nakaya T, Imoto M (1982). Polymeric phospholipid analogs. 14. the convenient preparation of a vinyl monomer containing a phospholipid analog. Makromol Chem Rapid Commun 3:457–459

    Article  CAS  Google Scholar 

  • Umeda T, Nakaya T, Imoto M (1985). Polymeric phospholipid analogs. 16. synthesis and properties of polymers containing phosphatidylcholine analogs in the polymer backbones. Makromol Chem Rapid Commun 6:285–290

    Article  CAS  Google Scholar 

  • van der Heiden AP, Goebbels D, Pijpers AP, Koole LH (1997). A photochemical method for the surface modification of poly(etherurethanes) with phosphoryl-choline-containing compounds to improve hemocompatibility. J Biomed Mater Res A 37:282–290

    Article  Google Scholar 

  • van der Heiden AP, Koole LH (1996) Photochemical coupling of aryl azides to poly(ether urethane) surface: Studies with a fluorescent model compound. Macromolecules 29:7012–7015

    Article  Google Scholar 

  • van der Heiden AP, Willems GM, Lindhout T, Pijpers AP, Koole LH (1998) Adsorption of proteins onto poly(ether urethane) with a phosphorylcholine moiety and influence of preadsorbed phospholipid. J Biomed Mater Res A 40:195–203

    Article  Google Scholar 

  • Wang T, Wang YQ, Su YL, Jiang ZY (2005) Improved protein-adsorption-resistant property of PES/SPC blend membrane by adjustment of coagulation bath composition. Colloid Surface B 46:233–239

    Article  CAS  Google Scholar 

  • Xu ZK, Dai QW, Wu J, Huang XJ, Yang Q (2004) Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: A novel approach. Langmuir 20:1481–1488

    Article  CAS  Google Scholar 

  • Yajima S, Sonoyama Y, Suzuki K, Kimura K (2002) Ion-sensor property and blood compatibility of neutral-carrier-type poly(vinyl chloride) membranes coated by phosphorylcholine polymers. Anal Chim Acta 463:31–37.

    Article  CAS  Google Scholar 

  • Yamada M, Li YJ, Nakaya T (1995a) Synthesis and properties of polymers containing phosphatidylcholine analogs in the main chains and long alkyl-groups in the side-chains. J Macromol Sci A 32:1723–1733

    Article  Google Scholar 

  • Yamada M, Li YJ, Nakaya T (1995b) Synthesis of novel organopolysiloxanes having a phospholipid-like structure. Macromolecules 28:2590–2591

    Article  CAS  Google Scholar 

  • Yasuzawa M, Nakaya T, Imoto M (1985a) Polymeric phospholipid analogs. 17. synthesis and properties of vinyl-polymers containing cholesterol and phosphatidylcholine analogous moieties. Makromol Chem Rapid Commun 6:721–726

    Article  CAS  Google Scholar 

  • Yasuzawa M, Nakaya T, Imoto M (1984b) Polymeric phospholipid analogs. 18. synthesis and properties of a vinyl polymer containing both vitamin E and phosphatidylcholine analogous moieties. Makromol Chem Rapid Commun 6:727–731

    Article  Google Scholar 

  • Ye SH, Watanabe J, Ishihara K (2004) Cellulose acetate hollow fiber membranes blended with phospholipid polymer and their performance for hemopurification. J Biomat Sci-Polym Ed 15:981–1001

    Article  CAS  Google Scholar 

  • Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2002) Novel cellulose acetate membrane blended with phospholipid polymer for hemocompatible filtration system. J Membrane Sci 210:411–421

    Article  CAS  Google Scholar 

  • Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2003) Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials 24:4143–4152

    Article  CAS  Google Scholar 

  • Yoneyama T, Ishihara K, Nakabayashi N, Ito M, Mishima Y (1998). Short-term in vivo evaluation of small-diameter vascular prosthesis composed of segmented poly(etherurethane) 2-methacryloyloxyethyl phosphorylcholine polymer blend. J Biomed Mater Res A 43:15–20

    Article  CAS  Google Scholar 

  • Zwaal RFA, Comfurius P, van Deenen LLM (1977) Membrane asymmetry and blood coagulation. Nature 268:358–360

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Membranes with Phospholipid Analogous Surfaces. In: Surface Engineering of Polymer Membranes. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88413-2_6

Download citation

Publish with us

Policies and ethics