Advertisement

Practical-Sized Instances of Multivariate PKCs: Rainbow, TTS, and ℓIC-Derivatives

  • Anna Inn-Tung Chen
  • Chia-Hsin Owen Chen
  • Ming-Shing Chen
  • Chen-Mou Cheng
  • Bo-Yin Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5299)

Abstract

We present instances of MPKCs (multivariate public key cryptosystems) with design, given the best attacks we know, and implement them on commodity PC hardware. We also show that they can hold their own compared to traditional alternatives. In fact, they can be up to an order of magnitude faster.

Keywords

Gröbner basis multivariate public key cryptosystem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akkar, M.-L., Courtois, N.T., Duteuil, R., Goubin, L.: A fast and secure implementation of SFLASH. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 267–278. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations. In: Proceedings of the International Conference on Polynomial System Solving, pp. 71–74, Previously INRIA report RR-5049 (2004)Google Scholar
  3. 3.
    Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic expansion of the degree of regularity for semi-regular systems of equations. In: Gianni, P. (ed.) MEGA 2005 Sardinia (Italy) (2005)Google Scholar
  4. 4.
    Berbain, C., Billet, O., Gilbert, H.: Efficient implementations of multivariate quadratic systems. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 174–187. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bernstein, D.J., Lange, T.: Inverted edwards coordinates. In: Boztaş, S., Lu, H.-F. (eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Billet, O., Gilbert, H.: Cryptanalysis of rainbow. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Coppersmith, D., Stern, J., Vaudenay, S.: The security of the birational permutation signature schemes. Journal of Cryptology 10, 207–221 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Courtois, N., Goubin, L., Patarin, J.: SFLASH: Primitive specification (second revised version), Submissions, Sflash, 11 pages (2002), https://www.cosic.esat.kuleuven.be/nessie
  11. 11.
    Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000), http://www.minrank.org/xlfull.pdf CrossRefGoogle Scholar
  12. 12.
    Ding, J.: A new variant of the Matsumoto-Imai cryptosystem through perturbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Ding, J., Gower, J.: Inoculating multivariate schemes against differential attacks. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958. Springer, Heidelberg (2006), http://eprint.iacr.org/2005/255 CrossRefGoogle Scholar
  14. 14.
    Ding, J., Gower, J., Schmidt, D.: Multivariate Public-Key Cryptosystems. In: Advances in Information Security. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Ding, J., Schmidt, D.: Cryptanalysis of HFEv and internal perturbation of HFE. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 288–301. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Ding, J., Wolf, C., Yang, B.-Y.: ℓ-invertible cycles for multivariate quadratic public key cryptography. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 266–281. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008), http://eprint.iacr.org/2008/108 CrossRefGoogle Scholar
  19. 19.
    Ding, J., Yang, B.-Y., Dubois, V., Cheng, C.-M., Chen, O.C.-H.: Breaking the symmetry: a way to resist the new differential attack. In: ICALP 2008. LNCS. Springer, Heidelberg (2008), http://eprint.iacr.org/2007/366 Google Scholar
  20. 20.
    Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F 4). Journal of Pure and Applied Algebra 139, 61–88 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5). In: International Symposium on Symbolic and Algebraic Computation — ISSAC 2002, pp. 75–83. ACM Press, New York (2002)CrossRefGoogle Scholar
  23. 23.
    Fouque, P.-A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Fouque, P.-A., Macario-Rat, G., Perret, L., Stern, J.: Total break of the ℓIC- signature scheme. In: Public Key Cryptography, pp. 1–17 (2008)Google Scholar
  25. 25.
    Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  27. 27.
    Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  28. 28.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–545. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  29. 29.
    Ogura, N., Uchiyama, S.: Remarks on the attack of fouque et al. against the ℓic scheme. Cryptology ePrint Archive, Report 2008/208 (2008), http://eprint.iacr.org/
  30. 30.
    Wolf, C., Braeken, A., Preneel, B.: Efficient cryptanalysis of RSE(2)PKC and RSSE(2)PKC. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 294–309. Springer, Heidelberg (2005), http://eprint.iacr.org/2004/237 CrossRefGoogle Scholar
  31. 31.
    Wolf, C., Preneel, B.: Taxonomy of public key schemes based on the problem of multivariate quadratic equations. Cryptology ePrint Archive, Report 2005/077, 64 pages, May 12 (2005), http://eprint.iacr.org/2005/077/
  32. 32.
    Yang, B.-Y., Chen, J.-M.: All in the XL family: Theory and practice. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryptosystems: The new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Yang, B.-Y., Chen, J.-M., Chen, Y.-H.: TTS: High-speed signatures on a low-cost smart card. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 371–385. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Anna Inn-Tung Chen
    • 1
  • Chia-Hsin Owen Chen
    • 2
  • Ming-Shing Chen
    • 2
  • Chen-Mou Cheng
    • 1
  • Bo-Yin Yang
    • 2
  1. 1.Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan
  2. 2.Institute of Information ScienceAcademia SinicaTaipeiTaiwan

Personalised recommendations