Advertisement

Merkle Tree Traversal Revisited

  • Johannes Buchmann
  • Erik Dahmen
  • Michael Schneider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5299)

Abstract

We propose a new algorithm for computing authentication paths in the Merkle signature scheme. Compared to the best algorithm for this task, our algorithm reduces the worst case running time considerably.

Keywords

Authentication path computation digital signatures Merkle signatures Merkle tree traversal post-quantum cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman, P., Karpinski, M., Nekrich, Y.: Optimal trade-off for Merkle tree traversal. Theoretical Computer Science 372(1), 26–36 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buchmann, J., Coronado, C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS — an improved Merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Coronado, C.: On the security and the efficiency of the Merkle signature scheme. Cryptology ePrint Archive, Report 2005/192 (2005), http://eprint.iacr.org/
  5. 5.
    Dods, C., Smart, N., Stam, M.: Hash based digital signature schemes. In: Smart, N. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual Symposium on the Theory of Computing, pp. 212–219. ACM Press, New York (1996)Google Scholar
  7. 7.
    Jakobsson, M., Leighton, T., Micali, S., Szydlo, M.: Fractal Merkle tree representation and traversal. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 314–326. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Lamport, L.: Constructing digital signatures from a one way function. Technical Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)Google Scholar
  9. 9.
    Lenstra, A.K., Verheul., E.R.: Selecting cryptographic key sizes. Journal of Cryptology 14(4), 255–293 (2001); updated version (2004), http://plan9.bell-labs.com/who/akl/index.html MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Naor, D., Shenhav, A., Wool, A.: One-time signatures revisited: Practical fast signatures using fractal merkle tree traversal. In: IEEE – 24th Convention of Electrical and Electronics Engineers in Israel, pp. 255–259 (2006)Google Scholar
  12. 12.
    Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proc. 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)CrossRefGoogle Scholar
  13. 13.
    Szydlo, M.: Merkle tree traversal in log space and time (preprint, 2003), http://www.szydlo.com/
  14. 14.
    Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Johannes Buchmann
    • 1
  • Erik Dahmen
    • 1
  • Michael Schneider
    • 1
  1. 1.Department of Computer ScienceTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations