McEliece Cryptosystem Implementation: Theory and Practice

  • Bhaskar Biswas
  • Nicolas Sendrier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5299)


Though it is old and considered fast, the implementation of McEliece public-key encryption scheme has never been thoroughly studied. We consider that problem here and we provide an implementation with a complete description of our algorithmic choices and parameters selection, together with the state of the art in cryptanalysis. This provides a reference for measuring speed and scalability of this cryptosystem. Compared with other, number-theory based, public key scheme, we demonstrate a gain of a factor at least 5 to 10.


public-key cryptosystem McEliece encryption scheme code-based cryptography cryptographic implementation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barg, A.: Complexity issues in coding theory. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding theory, ch. 7, vol. I, pp. 649–754. North-Holland, Amsterdam (1998)Google Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Optimal asymetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of Computation 24(111), 713–715 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24(3) (May 1978)Google Scholar
  5. 5.
    Berson, T.: Failure of the McEliece public-key cryptosystem under message-resend and related-message attack. In: Kalisky, B. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 213–220. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Transactions on Information Theory 44(1), 367–378 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Canteaut, A., Sendrier, N.: Cryptanalysis of the original McEliece cryptosystem. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 187–199. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Cover, T.: Enumerative source encoding. IEEE Transactions on Information Theory 19(1), 73–77 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Finiasz, M.: Nouvelles constructions utilisant des codes correcteurs d’erreurs en cryptographie à clef publique. Thèse de doctorat, École Polytechnique (October 2004)Google Scholar
  10. 10.
    Ganz, J.: Factoring polynomials using binary representations of finite fields. IEEE Transactions on Information Theory 43(1), 147–153 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key cryptosystems. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 2–12. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems -Conversions for McEliece PKC. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 19–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. In: DSN Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA, pp. 114–116 (January 1978)Google Scholar
  14. 14.
    Patterson, N.J.: The algebraic decoding of Goppa codes. IEEE Transactions on Information Theory 21(2), 203–207 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pointcheval, D.: Chosen-ciphertext security for any one-way cryptosystem. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 129–146. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Sendrier, N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Transactions on Information Theory 46(4), 1193–1203 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs d’erreurs. Mémoire d’habilitation à diriger des recherches, Université Paris 6 (March 2002)Google Scholar
  18. 18.
    Sendrier, N.: Encoding information into constant weight words. In: IEEE Conference, ISIT 2005, pp. 435–438, Adelaide, Australia (September 2005)Google Scholar
  19. 19.
    Sun, H.M.: Further cryptanalysis of the McEliece public-key cryptosystem. IEEE Trans. on communication letters 4(1), 18–19 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bhaskar Biswas
    • 1
  • Nicolas Sendrier
    • 1
  1. 1.Centre de recherche INRIA Paris - RocquencourtDomaine de Voluceau, Rocquencourt - B.P. 105Le Chesnay CedexFrance

Personalised recommendations