Square-Vinegar Signature Scheme

  • John Baena
  • Crystal Clough
  • Jintai Ding
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5299)


We explore ideas for speeding up HFE-based signature schemes. In particular, we propose an HFEv system with odd characteristic and a secret map of degree 2. Changing the characteristic of the system has a profound effect, which we attempt to explain and also demonstrate through experiment. We discuss known attacks which could possibly topple such systems, especially algebraic attacks. After testing the resilience of these schemes against F4, we suggest parameters that yield acceptable security levels.


Multivariate Cryptography HFEv Signature Scheme Odd Characteristic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M., Sugita, M.: Comparison Between XL and Gröbner Basis Algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 338–353. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Computational Algebra Group, University of Sydney. The MAGMA computational algebra system for algebra, number theory and geometry (2005),
  3. 3.
    Courtois, N., Daum, M., Felke, P.: On the Security of HFE, HFEv- and Quartz. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 337–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Ding, J., Gower, J.E., Schmidt, D.: Multivariate Public Key Cryptosystems. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  5. 5.
    Ding, J., Schmidt, D., Werner, F.: Algebraic Attack on HFE Revisited. In: The 11th Information Security Conference, Taipei, Taiwan (September 2008)Google Scholar
  6. 6.
    Ding, J., Schmidt, D.: Cryptanalysis of HFEv and the Internal Perturbation of HFE cryptosystems. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 288–301. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Dubois, V., Granboulan, L., Stern, J.: Cryptanalysis of HFE with Internal Perturbation. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 249–265. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical Cryptanalysis of SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE) cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F 4). Journal of Pure and Applied Algebra 139, 61–88 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5). In: International Symposium on Symbolic and Algebraic Computation — ISSAC 2002, pp. 75–83. ACM Press, New York (2002)Google Scholar
  12. 12.
    Gray, M.R., Johnson, D.S.: Computers and Intractability – A guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)Google Scholar
  13. 13.
    Jiang, X., Ding, J., Hu, L.: Kipnis-Shamir’s Attack on HFE Revisited. Cryptology ePrint Archive, Report 2007/203,
  14. 14.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Kipnis, A., Shamir, A.: Cryptanalysis of the Oil and Vinegar Signature Scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–267. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature verification and message encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  18. 18.
    NESSIE: New European Schemes for Signatures, Integrity, and Encryption. Information Society Technologies Programme of the European Commission (IST-1999-12324),
  19. 19.
    Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)Google Scholar
  20. 20.
    Patarin, J.: Hidden Field Equations (HFE) and Isomorphism of Polynomials (IP): Two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996); extended Version, CrossRefGoogle Scholar
  21. 21.
    Patarin, J.: The Oil and Vinegar Signature Scheme. In: Dagstuhl Workshop on Cryptography (September 1997)Google Scholar
  22. 22.
    Patarin, J., Goubin, L.: Trapdoor one-way permutations and multivariate polynomials. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 356–368. Springer, Heidelberg (1997); extended Version, CrossRefGoogle Scholar
  23. 23.
    Patarin, J., Goubin, L., Courtois, N.: \(C_{-+}^*\) and HM: variations around two schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 35–50. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Patarin, J., Goubin, L., Courtois, N.: Quartz, 128-bit long digital signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 352–357. Springer, Heidelberg (2001)Google Scholar
  25. 25.
    Patarin, J., Goubin, L., Courtois, N.: Quartz, 128-bit long digital signatures. An updated version of Quartz specification, pp. 357-359,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • John Baena
    • 1
    • 2
  • Crystal Clough
    • 1
  • Jintai Ding
    • 1
  1. 1.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of MathematicsNational University of ColombiaMedellinColombia

Personalised recommendations