Computation Tree Regular Logic for Genetic Regulatory Networks

  • Radu Mateescu
  • Pedro T. Monteiro
  • Estelle Dumas
  • Hidde de Jong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5311)


Model checking has proven to be a useful analysis technique not only for concurrent systems, but also for the genetic regulatory networks (Grns) that govern the functioning of living cells. The applications of model checking in systems biology have revealed that temporal logics should be able to capture both branching-time and fairness properties. At the same time, they should have a user-friendly syntax easy to employ by non-experts. In this paper, we define Ctrl (Computation Tree Regular Logic), an extension of Ctl with regular expressions and fairness operators that attempts to match these criteria. Ctrlsubsumes both Ctl and Ltl, and has a reduced set of temporal operators indexed by regular expressions, inspired from the modalities of Pdl (Propositional Dynamic Logic). We also develop a translation of Ctrl into HmlR (Hennessy-Milner Logic with Recursion), an equational variant of the modal μ-calculus. This has allowed us to obtain an on-the-fly model checker with diagnostic for Ctrl by directly reusing the verification technology available in the Cadp toolbox. We illustrate the application of the Ctrl model checker by analyzing the Grn controlling the carbon starvation response of Escherichia coli.


Model Check Temporal Logic Regular Expression Atomic Proposition Kripke Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11), 1239–1250 (2007)CrossRefGoogle Scholar
  2. 2.
    Regev, A., Shapiro, E.: Cells as computation. Nature 419(6905), 343 (2002)CrossRefGoogle Scholar
  3. 3.
    de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. J. of Computational Biology 9(1), 67–103 (2002)CrossRefGoogle Scholar
  4. 4.
    Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochemistry and Biophysics 38(3), 271–286 (2003)CrossRefGoogle Scholar
  5. 5.
    Barnat, J., Brim, L., Cerná, I., Drazan, S., Safranek, D.: Parallel model checking large-scale genetic regulatory networks with DiVinE. In: FBTC 2007. ENTCS, vol. 194 (2008)Google Scholar
  6. 6.
    Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schneider, D.: Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in Escherichia coli. Bioinformatics 21 (Suppl. 1), i19–i28 (2005)Google Scholar
  7. 7.
    Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: Extending Thomas’ asynchronous logical approach with temporal logic. J. of Theoretical Biology 229(3), 339–348 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using the PRISM model checker. In: CMSB 2005, pp. 79–90 (2005)Google Scholar
  9. 9.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. TCS 325(1), 25–44 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fisher, J., Piterman, N., Hajnal, A., Henzinger, T.A.: Predictive modeling of signaling crosstalk during C. elegans vulval development. PLoS Computational Biology 3(5), e92 (2007)CrossRefGoogle Scholar
  11. 11.
    Batt, G., Bergamini, D., de Jong, H., Gavarel, H., Mateescu, R.: Model checking genetic regulatory networks using GNA and CADP. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 158–163. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model checker. STTT 2(4), 410–425 (2000)CrossRefzbMATHGoogle Scholar
  13. 13.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A toolbox for the construction and analysis of distributed processes. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks: I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bulletin of Mathematical Biology 57(2), 247–276 (1995)CrossRefzbMATHGoogle Scholar
  15. 15.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Specification, vol. I. Springer, Heidelberg (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  17. 17.
    Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: On branching versus linear time. In: POPL 1983, pp. 127–140 (January 1983)Google Scholar
  18. 18.
    Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Beer, I., Ben-David, S., Landver, A.: On-the-fly model checking of RCTL formulas. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 184–194. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Brázdil, T., Cerná, I.: Model checking of RegCTL. Computers and Artificial Intelligence 25(1) (2006)Google Scholar
  21. 21.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. JCSS 18(2), 194–211 (1979)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Streett, R.: Propositional dynamic logic of looping and converse. Information and Control (1982)Google Scholar
  23. 23.
    Larsen, K.G.: Proof systems for Hennessy-Milner logic with recursion. In: Dauchet, M., Nivat, M. (eds.) CAAP 1988. LNCS, vol. 299, pp. 215–230. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  24. 24.
    Mateescu, R.: CÆSAR_SOLVE: A generic library for on-the-fly resolution of alternation-free boolean equation systems. STTT 8(1), 37–56 (2006)CrossRefGoogle Scholar
  25. 25.
    Mateescu, R., Monteiro, P.T., Dumas, E., Mateescu, R.: Computation tree regular logic for genetic regulatory networks. Research Report RR-6521, INRIA (2008)Google Scholar
  26. 26.
    Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The temporal logic Sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 363–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Holzmann, G.: The SPIN Model Checker – Primer and Reference Manual. Addison-Wesley, Reading (2003)Google Scholar
  28. 28.
    Wolper, P.: A translation from full branching time temporal logic to one letter propositional dynamic logic with looping (published manuscript, 1982)Google Scholar
  29. 29.
    Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular alternation-free mu-calculus. SCP 46(3), 255–281 (2003)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Brzozowski, J.A.: Derivatives of regular expressions. JACM 11(4), 481–494 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools. Addison-Wesley, Reading (1986)zbMATHGoogle Scholar
  32. 32.
    Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the alternation-free modal mu-calculus. FMSD 2(2), 121–147 (1993)zbMATHGoogle Scholar
  33. 33.
    Andersen, H.R.: Model checking and boolean graphs. TCS 126(1), 3–30 (1994)CrossRefzbMATHGoogle Scholar
  34. 34.
    Vergauwen, B., Lewi, J.: Efficient local correctness checking for single and alternating boolean equation systems. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 304–315. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  35. 35.
    Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing systems. In: Cuellar, J., Maibaum, T.S.E. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  36. 36.
    Arts, T., Earle, C.B., Derrick, J.: Development of a verified Erlang program for resource locking. STTT 5(2–3), 205–220 (2004)CrossRefGoogle Scholar
  37. 37.
    Garavel, H.: OPEN/CÆSAR: An open software architecture for verification, simulation, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  38. 38.
    Garavel, H., Lang, F., Mateescu, R.: Compiler construction using LOTOS NT. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 9–13. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  39. 39.
    Glass, L., Kauffman, S.A.: The logical analysis of continuous non-linear biochemical control networks. J. of Theoretical Biology 39(1), 103–129 (1973)CrossRefGoogle Scholar
  40. 40.
    Batt, G., de Jong, H., Page, M., Geiselmann, J.: Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica 44(4), 982–989 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    de Jong, H., Gouzé, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bulletin of Mathematical Biology 66(2), 301–340 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Ropers, D., de Jong, H., Page, M., Schneider, D., Geiselmann, J.: Qualitative simulation of the carbon starvation response in Escherichia coli. Biosystems 84(2), 124–152 (2006)CrossRefGoogle Scholar
  43. 43.
    Joubert, C., Mateescu, R.: Distributed local resolution of boolean equation systems. In: PDP 2005. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  44. 44.
    Joubert, C., Mateescu, R.: Distributed on-the-fly model checking and test case generation. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 126–145. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  45. 45.
    Monteiro, P.T., Ropers, D., Mateescu, R., Freitas, A.T., de Jong, H.: Temporal logic patterns for querying dynamic models of cellular interaction networks. Bioinformatics (in press, 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Radu Mateescu
    • 1
  • Pedro T. Monteiro
    • 1
    • 2
  • Estelle Dumas
    • 1
  • Hidde de Jong
    • 1
  1. 1.Inria Rhône-AlpesMontbonnot St MartinFrance
  2. 2.Inesc-Id/IstLisboaPortugal

Personalised recommendations