Practical Efficient Modular Linear-Time Model-Checking

  • Carlo A. Furia
  • Paola Spoletini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5311)


This paper shows how the modular structure of composite systems can guide the state-space exploration in explicit-state linear-time model-checking and make it more efficient in practice. Given a composite system where every module has input and output variables — and variables of different modules can be connected — a total ordering according to which variables are generated is determined, through heuristics based on graph-theoretical analysis of the modular structure. The technique is shown to outperform standard exploration techniques (that do not take the modular structure information into account) by several orders of magnitude in experiments with Spin models of MTL formulas.


Model Check Modular Structure Reservoir System Modular System Strongly Connect Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  2. 2.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 996–1072. Elsevier Science, Amsterdam (1990)Google Scholar
  3. 3.
    Furia, C.A., Spoletini, P.: Practical efficient modular linear-time model-checking (July 2008); (extended version),
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  5. 5.
    Harel, D., Pnueli, A.: On the development of reactive systems. In: Logics and Models of Concurrent Systems, pp. 477–498 (1985)Google Scholar
  6. 6.
    Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual (2003)Google Scholar
  7. 7.
    Kupferman, O., Vardi, M.Y.: An automata-theortetic approach to modular model checking. ACM TOPLAS 22(1), 87–128 (2000)CrossRefGoogle Scholar
  8. 8.
    Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information and Computation 164(2), 322–344 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Morzenti, A., Pradella, M., San Pietro, P., Spoletini, P.: Model-checking TRIO specifications in SPIN. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 542–561. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Communications of the ACM 15(12), 1053–1058 (1972)CrossRefGoogle Scholar
  11. 11.
    Pradella, M., San Pietro, P., Spoletini, P., Morzenti, A.: Practical model checking of LTL with past. In: ATVA 2003, pp. 135–146 (2003)Google Scholar
  12. 12.
    Spoletini, P.: Verification of Temporal Logic Specification via Model Checking. PhD thesis, DEI, Politecnico di Milano (May 2005)Google Scholar
  13. 13.
    Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 133–164. Elsevier Science, Amsterdam (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carlo A. Furia
    • 1
  • Paola Spoletini
    • 2
  1. 1.DEI, Politecnico di MilanoMilanoItaly
  2. 2.DSCPIUniversità degli Studi dell’InsubriaComoItaly

Personalised recommendations