Impartial Anticipation in Runtime-Verification

  • Wei Dong
  • Martin Leucker
  • Christian Schallhart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5311)


In this paper, a uniform approach for synthesizing monitors checking correctness properties specified in linear-time logics at runtime is provided. Therefore, a generic three-valued semantics is introduced reflecting the idea that prefixes of infinite computations are checked. Then a conceptual framework to synthesize monitors from a logical specification to check an execution incrementally is established, with special focus on resorting to the automata-theoretic approach. The merits of the presented framework are shown by providing monitor synthesis approaches for a variety of different logics such as LTL, the linear-time μ-calculus, PLTL mod, SiS, and RLTL.


Model Check Correctness Property Abstraction Function Automaton Construction Emptiness Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly—but how ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 126–138. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium on the Foundations of Computer Science (FOCS), pp. 46–57 (1977)Google Scholar
  3. 3.
    Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. Technical Report TUM-I0724, TU München (2007)Google Scholar
  5. 5.
    Demri, S.: LTL over integer periodicity constraints. Theoretical Computer Science 360(1-3), 96–123 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs using fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  7. 7.
    Vardi, M.Y.: A temporal fixpoint calculus. In: POPL, pp. 250–259 (1988)Google Scholar
  8. 8.
    Büchi, J.: Weak second order logic and finite automata. Z. Math. Logik, Grundlag. Math. 5, 62–66 (1960)zbMATHGoogle Scholar
  9. 9.
    Leucker, M., Sánchez, C.: Regular linear temporal logic. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 291–305. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Logic in Computer Science (LICS), pp. 332–345 (1986)Google Scholar
  11. 11.
    Raskin, J.F., Schobbens, P.Y.: State clock logic: A decidable real-time logic. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 33–47. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past. In: LICS (2002)Google Scholar
  13. 13.
    Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its temporal logic. In: POPL, pp. 173–183 (1986)Google Scholar
  14. 14.
    Lange, M.: Weak automata for the linear time μ-calculus. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 267–281. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Wei Dong
    • 1
  • Martin Leucker
    • 2
  • Christian Schallhart
    • 3
  1. 1.School of ComputerNational University of Defense TechnologyP.R. China
  2. 2.Institut für InformatikTechnische Universität MünchenGermany
  3. 3.Formal Methods in Systems Engineering, FB InformatikTU DarmstadtGermany

Personalised recommendations