On the Applicability of Stochastic Petri Nets for Analysis of Multiserver Retrial Systems with Different Vacation Policies

  • Nawel Gharbi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5311)


This paper deals with retrial systems where servers are subject to random vacations. So far, these systems were analyzed only by queueing theory and almost works assumed that the service station consists of one server and the customers source is infinite. In this paper, we give a detailed qualitative and performance analysis of finite-source multiserver retrial systems with multiple and single vacations of servers or all station, using Generalized Stochastic Petri nets. We show how this high level stochastic model allows us to cope with the complexity of such systems involving the simultaneous presence of retrials and vacations, and how stationary performance indices can be expressed as a function of Petri net elements.


Multiserver retrial systems Finite-source Vacation policies Generalized Stochastic Petri nets Modeling and Performance measures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aissani, A.: An M x/G/1 retrial queue with exhaustive vacations. Journal of Statistics and Management Systems 3, 269–286 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. John Wiley and Sons, New York (1995)zbMATHGoogle Scholar
  3. 3.
    Artalejo, J.R.: Analysis of an M/G/1 queue with constant repeated attempts and server vacations. Computers and Operations Research 24, 493–504 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Artalejo, J.R., Falin, G.I.: Standard and retrial queueing systems: A comparative analysis. Revista Matematica Complutense XV, pp. 101–129 (2002)Google Scholar
  5. 5.
    Artalejo, J.R., López-Herrero, M.J.: On the M/M/m queue with removable servers, Stochastic Point Processes. In: Srinivasan, S.K., Vijayakumar, A. (eds.), pp. 124–144. Narosa Publishing House (2003)Google Scholar
  6. 6.
    Chao, X., Zhao, Y.Q.: Analysis of multi-sever queues with station and server vacations. European Journal of Operational Research 110, 392–406 (1998)CrossRefzbMATHGoogle Scholar
  7. 7.
    Choudhury, G.: A two phase batch arrival retrial queueing system with Bernoulli vacation schedule. Applied Mathematics and Computation 188, 1455–1466 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chiola, G., Franceschinis, C., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: Graphical Editor and Analyzer for Timed and Stochastic Petri Nets. Performance Evaluation 24, 47–68 (1995)CrossRefzbMATHGoogle Scholar
  9. 9.
    Falin, G.I.: A survey on retrial queues. Queueing Systems 7, 127–168 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman and Hall, London (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Falin, G.I., Artalejo, J.R.: A finite source retrial queue. European Journal of Operational Research 108, 409–424 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gharbi, N., Ioualalen, M.: GSPN Analysis of retrial systems with servers breakdowns and repairs. Applied Mathematics and Computation 174, 1151–1168 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Houck, D.J., Lai, W.S.: Traffic modeling and analysis of hybrid fiber-coax systems. Computer Networks and ISDN systems 30, pp. 821–834 (1998)Google Scholar
  14. 14.
    Janssens, G.K.: The quasi-random input queueing system with repeated attempts as a model for collision-avoidance star local area network. IEEE Transactions on Communications 45, 360–364 (1997)CrossRefGoogle Scholar
  15. 15.
    Krishna Kumar, B., Arivudainambi, D.: The M/G/1 retrial queue with Bernoulli schedules and general retrial times. Computers and Mathematics with Applications 43, 15–30 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kwon, S.J.: Performance analysis of CDPD Sleep mode for power conservation in mobile end systems. IEICE Trans. Commun. E84 (2001)Google Scholar
  17. 17.
    Li, H., Yang, T.: A single server retrial queue with server vacations and a finite number of input sources. European Journal of Operational Research 85, 149–160 (1995)CrossRefzbMATHGoogle Scholar
  18. 18.
    Roszik, J., Sztrik, J., Kim, C.: Retrial queues in the performance modeling of cellular mobile networks using MOSEL. International Journal of Simulation: Systems, Science and Technology 1-2, 38–47 (2005)Google Scholar
  19. 19.
    Sikdar, K., Gupta, U.C.: Analytic and Numerical Aspects of Batch Service Queues with Single Vacation. Computers and Operations Research 32, 943–966 (2005)CrossRefzbMATHGoogle Scholar
  20. 20.
    Tian, N., Zhang, Z.G.: Quantifying the performance effects of idle time utilization in multiserver systems. Naval Research Logistics 54, 189–199 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Trivedi, K.S., Ibe, O.C.: Stochastic Petri net analysis of finite-population vacation queueing systems. Queueing Systems 8, 111–128 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tian, N., Xu, X.: M/M/c queue with synchronous multiple vacation of partial servers. Oper. Resear. Trans. 5, 85–94 (2001)Google Scholar
  23. 23.
    Tian, N., Zhang, Z.G.: Vacation Queueing Models: Theory and Applications. International Series in Operations Research & Management Science 93 (2006)Google Scholar
  24. 24.
    Wenhui, Z.: Analysis of a single-server retrial queue with FCFS orbit and Bernoulli vacation. Applied Mathematics and Computation 161, 353–364 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Xu, X., Zhang, Z.G.: Analysis of multi-server queue with a single vacation (e,d)-policy. Performance Evaluation 63, 825–838 (2006)CrossRefGoogle Scholar
  26. 26.
    Yang, T., Templeton, J.G.C.: A survey on retrial queues. Queueing Systems 2, 201–233 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhang, Z.G., Tian, N.: Analysis of queueing systems with synchronous single vacation for some servers. Queueing Systems: Theory and Applications 45, 161–175 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zhang, Z.G., Tian, N.: Analysis of queueing systems with synchronous vacations of partial servers. Performance Evaluation 52, 269–282 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nawel Gharbi
    • 1
  1. 1.Department of Computer ScienceUniversity of Sciences and Technology USTHBAlgiersAlgeria

Personalised recommendations