Skip to main content

Monogenic Curvature Tensor as Image Model

  • Chapter

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

In this chapter, a new rotation-invariant generalization of the analytic signal will be presented to analyze intrinsic 1D and 2D local image structures. By combining differential geometry and Clifford analysis, the monogenic curvature tensor can be derived to perform a split of identity and to enable simultaneous estimation of local amplitude, phase, main orientation, and angle of intersection in a monogenic scale-space framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speed up robust features. In A. Leonardis, M. Bischof, and A. Pinz, editors, ECCV, volume 3951 of LNCS, Springer-Verlag, Berlin, Heidelberg, New York, pp. 404–417, 2006.

    Google Scholar 

  2. P. J. Besl and R. C. Jain. Invariant surface characteristics for 3D object recognition in range images. Computer Vision, Graphics, and Image Processing, 33(l):33–80, 1986.

    Article  Google Scholar 

  3. J. Bigun. Vision with Direction. Springer-Verlag, Berlin, Heidelberg, New York, 2006.

    Google Scholar 

  4. J. Bigun and G. H. Granlund. Optimal detection of linear symmetry. In Proceedings of IEEE First International Conference on Computer Vision, pp. 433–438, 1984.

    Google Scholar 

  5. W. Blaschke and K. Leichtwei. Elementare Differentialgeometrie. Springer-Verlag, Berlin, Heidelberg, New York, 1973.

    MATH  Google Scholar 

  6. E. D. Bloch. A First Course in Geometric Topology and Differential Geometry. Birkhäuser, Boston, 1997.

    MATH  Google Scholar 

  7. F. Brackx, R. Delanghe, and F. Sommen. Clifford Analysis. Pittman, Boston, 1982.

    MATH  Google Scholar 

  8. [8] F. Brackx, B. De Knock, and H. De Schepper. Generalized multidimensional Hilbert transforms in Clifford analysis. International Journal of Mathematics and Mathematical Sciences, 2006.

    Google Scholar 

  9. F. Brackx and H. De Schepper. Hilbert-Dirac operators in Clifford analysis. Chinese Annals of Mathematics, 26(1):1–14, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  10. D.A. Danielson. Vectors and Tensors in Engineering and Physics. Addison-Wesley Publ. Company, Redwood City, 1992.

    MATH  Google Scholar 

  11. C.T.J. Dodson and T. Poston. Tensor Geometry. Springer-Verlag, Berlin, Heidelberg, New York, 1997.

    Google Scholar 

  12. [12] M. Felsberg. Low-Level Image Processing with the Structure Multivector. PhD thesis, Technical Report No. 2016, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik, 2002.

    Google Scholar 

  13. M. Felsberg and G. H. Granlund. POI detection using channel clustering and the 2D energy tensor. In Pattern Recognition, volume 3175 of LNCS, Springer-Verlag Berlin, Heidelberg, New York, pp. 103–110, 2004.

    Google Scholar 

  14. M. Felsberg and G. Sommer. The monogenic signal. IEEE Transactions on Signal Processing, 49(12):3136–3144, 2001.

    Article  MathSciNet  Google Scholar 

  15. M. Felsberg and G. Sommer. The structure multivector. In L. Dorst, C. Doran, and J. Lasenby, editors, Applications of Geometric Algebra in Computer Science and Engineering, Birkhäuser, Boston, pp. 437–448, 2002.

    Google Scholar 

  16. M. Felsberg and G. Sommer. The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision, 21:5–26, 2004.

    Article  MathSciNet  Google Scholar 

  17. [17] W. Förstner and E. Gülch. A fast operator for detection and precise location of distinct points, corners and centres of circular features. In Proc. ISPRS Intercommission Workshop, pp. 149–155, Interlaken, 1987.

    Google Scholar 

  18. W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):891–906, 1991.

    Article  Google Scholar 

  19. D. Gabor. Theory of communication. Journal IEEE, 93(26):429–457, 1946.

    Google Scholar 

  20. G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision. Kluwer Academic Publishers, Dordrecht, 1995.

    Google Scholar 

  21. A. Guiducci. Corner characterization by differential geometry techniques. Pattern Recognition Letters, 8:311–318, 1988.

    Article  MATH  Google Scholar 

  22. D. Hestense and G. Sobczyk. Clifford Algebra to Geometric Calculus. Reidel, Dordrecht, 1984.

    Google Scholar 

  23. [23] H. Knutsson. Representing local structure using tensors. In Proc. of 6th Scandinavian Conference on Image Analysis, pp. 244–251, 1989.

    Google Scholar 

  24. J. J. Koenderink. The structure of images. Biological Cybernetics, 50:363– 370, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. J. Koenderink and A. J. van Doom. The structure of two-dimensional scalar fields with applications to vision. Biological Cybernetics, 33:151– 158, 1979.

    Article  MATH  Google Scholar 

  26. [26] U. Köthe. Integrated edge and junction detection with the boundary tensor. In Proceeding of 9th International Conference on Computer Vision, volume 1, pp. 424–431, 2003.

    Google Scholar 

  27. U. Köthe and M. Felsberg. Riesz transform vs. derivatives: On the relationship between the boundary tensor and the energy tensor. In R. Kimmel, N. Sochen, and J. Weickert, editors, Scale Space and PDE Methods in Computer Vision, volume 3459 of LNCS, Springer-Verlag, Berlin, Heidelberg, New York, pp. 179–191, 2005.

    Google Scholar 

  28. P. Kovesi. Invariant Measures of Image Features from Phase Information. PhD thesis, University of Western Australia, Institute of Computer Science, Perth, 1996.

    Google Scholar 

  29. G. Krieger and C. Zetzsche. Nonlinear image operators for the evaluation of local intrinsic dimensionality. IEEE Transactions on Image Processing, 5(6):1026–1042, 1996.

    Article  Google Scholar 

  30. T. Lindeberg. Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2):79–116, 1998.

    Article  Google Scholar 

  31. P. Lounesto. Clifford Algebras and Spinors. London Mathematical Society Lecture Note Series. Cambridge University Press, 1997.

    Google Scholar 

  32. D. Lowe. Distinctive image features from scale-invariant keypoints, cascade filtering approach. International Journal of Computer Vision, 60:91–110, 2004.

    Article  Google Scholar 

  33. G. Medioni, M. S. Lee, and C. K. Tang. A Computational Framework for Segmentation and Grouping. Elsevier, 2000.

    Google Scholar 

  34. M. Michaelis and G. Sommer. Junction classification by multiple orientation detection. In ECCV, volume 801 of LNCS, Springer-Verlag, Berlin, Heidelberg, New York, pp. 101–108, 1994.

    Google Scholar 

  35. K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:1615–1630, 2005.

    Article  Google Scholar 

  36. K. Rangarajan, M. Shah, and D. Van Brackle. Optimal corner detector. Computer Vision, Graphics and Image Processing, 48:230–245, 1989.

    Article  Google Scholar 

  37. K. Rohr. Recognizing corners by fitting parametric models. International Journal of Computer Vision, 9(3):213–230, 1992.

    Article  Google Scholar 

  38. K. Rohr. Localization properties of direct corner detectors. Journal of Mathematical Imaging and Vision, 4:133–150, 1994.

    Article  MathSciNet  Google Scholar 

  39. G. Sobczyk and G. Erlebacher. Hybrid matrix geometric algebra. In H. Li, P. J. Olver, and G. Sommer, editors, Computer Algebra and Geometric Algebra with Applications, volume 3519 of LNCS, Springer-Verlag, Berlin, Heidelberg, New York, pp. 191–206, 2005.

    Google Scholar 

  40. G. Sommer. Geometric Computing with Clifford Algebras. Springer-Verlag, Berlin, Heidelberg, New York, 2001.

    MATH  Google Scholar 

  41. G. Sommer and C. Gebken. Robot vision in the language of geometric algebra. In G. Obinata and A. Dutta, editors, Vision Systems: Applications, I-Tech Education and Publishing, Vienna, pp. 459–486, 2007.

    Google Scholar 

  42. G. Sommer and D. Zang. Parity symmetry in multi-dimensional signals. Communications in Pure and Applied Analysis, 6(3):829–852, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  43. I. Stuke, T. Aach, E. Barth, and C. Mota. Analysing superimposed oriented patterns. In 6th IEEE Southwest Symposium on Image Analysis and Interpretation, Lake Tahoe, NV, pp. 133–137, 2004.

    Google Scholar 

  44. C. F. Westin. A Tensor Framework for Multidimensional Signal Processing. PhD thesis, Linköping University, Sweden, SE-581 83 Linköping, Sweden, 1994. Dissertation No 348, ISBN 91-7871-421-4.

    Google Scholar 

  45. L. Wietzke, O. Fleischmann, and G. Sommer. 2D image analysis by generalized Hilbert transforms in conformal space. In ECCV, volume 5303 of LNCS, Springer-Verlag, Berlin, Heidelberg, New York, pp. 638–649, 2008.

    Google Scholar 

  46. L. Wietzke and G. Sommer. The conformai monogenic signal. In G. Rigoll, editor, Pattern Recognition, volume 5096 of LNCS, Springer-Verlag, Berlin, Heidelberg, New York, pp. 527–536, 2008.

    Google Scholar 

  47. L. Wietzke, G. Sommer, C. Schmaltz, and J. Weickert. Differential geometry of monogenic signal representations. In G. Sommer and R. Klette, editors, Robot Vision, volume 4931 of LNCS, Springer-Verlag, Berlin, Heidelberg, New York, pp. 454–465, 2008.

    Google Scholar 

  48. D. Zang. Signal Modeling for Two-dimensional Image Structures and Scale-Space Based Image Analysis. PhD thesis, Technical Report No. 0705, Christian-Albrechts-Universität zu Kiel, Institut für Informatik, 2007.

    Google Scholar 

  49. D. Zang and G. Sommer. Signal modeling for two-dimensional image structures. Journal of Visual Communication and Image Representation, 18(l):81–99, 2007.

    Article  Google Scholar 

  50. C. Zetzsche and E. Barth. Fundamental limits of linear filters in the visual processing of two-dimensional signals. Vision Research, 30:1111–1117, 1990.

    Article  Google Scholar 

  51. L. Wietzke and G. Sommer. The 2D Analytic signal. Technical Report No. 0802, Christian-Albrechts-Universität zu Kiel, Institut für Informatik, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sommer, G., Wietzke, L., Zang, D. (2009). Monogenic Curvature Tensor as Image Model. In: Laidlaw, D., Weickert, J. (eds) Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88378-4_14

Download citation

Publish with us

Policies and ethics