Skip to main content

The Role of Tensor Fields for Satellite Gravity Gradiometry

  • Chapter
Visualization and Processing of Tensor Fields

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1764 Accesses

Summary

Satellite gravity gradiometry is a recent method for a detailed determination of the gravitational potential of the earth. The measurements provided by a gradiometer are – for a so-called full gradiometer – all second-order derivatives of the potential, that is, the Hessian tensor. This leads to a nonstandard problem in potential theory.

After a short description of satellite gradiometry, we focus on uniqueness and existence problems. For this, a certain decomposition of the Hessian tensor is of importance. The decomposition allows in addition to transfer modern solution methods for scalar functions on the sphere to the tensorial case, by generalizing zonal functions to zonal tensor kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backus, G.E. Potentials for tangent tensor fields on spheroids. Arch. Ration. Mech. Anal., 22, 210–252 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  2. Backus, G.E. Converting vector and tensor equations to scalar equations in spherical coordinates. Geophys. J.R. Astron. Soc., 13, 61–101 (1967)

    Google Scholar 

  3. Bayer, M. Geomagnetic field modelling from satellite data by first and second generation wavelets. Doctoral Thesis, Geomathematics Group, University of Kaiserslautern, Shaker, Aachen (2000)

    Google Scholar 

  4. ESA. European views on dedicated gravity field missions: GRACE and GOCE. ESD-MAG-REP-CON-001 (1998)

    Google Scholar 

  5. ESA. Gravity field and steady-state ocean circulation missions. ESTEC, Noordwijk, SP-1233(1) (1999)

    Google Scholar 

  6. Freeden, W. Über eine Klasse von Integralformeln der Mathematischen Geodäsie. Veröff. Geod. Inst. RWTH Aachen, Heft 27 (1979)

    Google Scholar 

  7. Freeden, W., Gervens, T., Schreiner, M. Constructive Approximation on the Sphere (with Applications to Geomathematics). Oxford Science Publications, Oxford (1998)

    MATH  Google Scholar 

  8. Freeden, W., Glockner, O., Schreiner, M. Spherical panel clustering and its numerical aspects. J. Geod. 72, 586–599 (1998)

    Article  MATH  Google Scholar 

  9. Freeden, W., Michael, V. Multiscale Potential Theory (With Applications to Geoscience), Birkhüser, Boston, Basel, Berlin (2004)

    MATH  Google Scholar 

  10. Freeden, W., Michel, V., Nutz, H. Satellite-to-satellite tracking and satellite gravity gradiometry (Advanced techniques for high-resolution geopotential field determination). J. Eng. Math., 43, 19–56 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Freeden, W., Schreiner, M. Multiresolution analysis by spherical up functions. Constr. Approx., 23(3), 241–259 (2004)

    Article  MathSciNet  Google Scholar 

  12. GFZ-EIGEN-CG01C geoid from the GeoForschungs-Zentrum Potdsam (http://www.gfz-potsdam.de) (2005)

  13. Glockner, O. On numerical aspects of gravitational field modelling from SST and SGG by harmonic splines and wavelets (with application to CHAMP data). Doctoral Thesis, Geomathematics Group, University of Kaiserslautern, Shaker, Aachen (2002)

    Google Scholar 

  14. Hesse, K. Domain decomposition methods in multiscale geopotential determination from SST and SGG. Doctoral Thesis, Geomathematics Group, University of Kaiserslautern, Shaker, Aachen (2003)

    Google Scholar 

  15. Hobson, E.W. The Theory of Spherical and Ellipsoidal Harmonics. Chelsea Publishing Company, New York (1955)

    Google Scholar 

  16. Müller, C. Spherical harmonics. Lecture Notes in Mathematics 17, Springer, Berlin (1966)

    Google Scholar 

  17. Schreiner, M. Tensor spherical harmonics and their application to satellite gradiometry. Doctoral Thesis, Geomathematics Group, University of Kaiserslautern, Shaker, Aachen (1994)

    Google Scholar 

  18. Schreiner, M. Uniqueness problems in satellite gradiometry. In: Proceedings of the 8th Conference of the European Consortium for Mathematics in Industry, Kaiserslautern, September 6–10 (1994)

    Google Scholar 

  19. Schreiner, M. Wavelet approximation by spherical up functions. Habilitation Thesis, Geomathematics Group, University of Kaiserslautern, Shaker, Aachen (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schreiner, M. (2009). The Role of Tensor Fields for Satellite Gravity Gradiometry. In: Laidlaw, D., Weickert, J. (eds) Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88378-4_10

Download citation

Publish with us

Policies and ethics