Abstract
Courtois, Finiasz and Sendrier proposed in 2001 a practical code-based signature scheme. We give a rigorous security analysis of a modified version of this scheme in the random oracle model. Our reduction involves two problems of coding theory widely considered as difficult, the Goppa Parametrized Bounded Decoding and the Goppa Code Distinguishing.
Keywords
- Hash Function
- Signature Scheme
- Random Oracle
- Parity Check Matrix
- Security Proof
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)
Bellare, M., Rogaway, P.: The exact security of digital signatures – how to sign with rsa and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070. pp. 399–416. Springer, Heidelberg (1996)
Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Trans. Inform. Th. 24 (1978)
Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology – CRYPTO 1982, Lecture Notes Computer Science, p. 153. Springer, Heidelberg (1982)
Chaum, D., van Anderpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)
Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–236. Springer, Heidelberg (2000)
Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)
Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inform. Th. 22(6), 644–654 (1976)
Finiasz, M.: Nouvelles constructions utilisant des codes correcteurs d’erreurs en cryptographie à clef publique. PhD thesis, INRIA – Ecole Polytechnique (October 2004) (in French)
Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Systems Sciences 28(2), 270–299 (1984)
Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)
Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Trans. Inform. Th. 40(1), 271–273 (1994)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland mathematical library, Amsterdam (1977)
McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Technical report, DSN Progress report # 42-44, Jet Propulsion Laboratory, Pasadena, Californila (1978)
Menezes, A.J., Vanstone, S.A., van Oorschot, P.C.: Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton (1996)
Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory 15(2), 159–166 (1986)
Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystems. CACM 21 (1978)
Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs d’erreurs. Habilitation à diriger les recherches, Université Pierre et Marie Curie, Paris 6, Paris, France ( March 2002) (in French)
Shoup, V.: Sequences of games: a tool for taming complexity in security proofs (manuscript, November 2004) (revised, May 2005; January 2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dallot, L. (2008). Towards a Concrete Security Proof of Courtois, Finiasz and Sendrier Signature Scheme. In: Lucks, S., Sadeghi, AR., Wolf, C. (eds) Research in Cryptology. WEWoRC 2007. Lecture Notes in Computer Science, vol 4945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88353-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-88353-1_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88352-4
Online ISBN: 978-3-540-88353-1
eBook Packages: Computer ScienceComputer Science (R0)