Skip to main content

Extension of Bayesian Network Classifiers to Regression Problems

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5290)

Abstract

In this paper we explore the extension of various Bayesian network classifiers to regression problems where some of the explanatory variables are continuous and some others are discrete. The goal is to compute the posterior distribution of the response variable given the observations, and then use that distribution to give a prediction. The involved distributions are represented as Mixtures of Truncated Exponentials. We test the performance of the proposed models on different datasets commonly used as benchmarks, showing a competitive performace with respect to the state-of-the-art methods.

Keywords

  • Bayesian networks
  • Regression
  • Mixtures of truncated exponentials

This work has been supported by the Spanish Ministry of Education and Science, project TIN2007-67418-C03-02 and by Junta de Andalucía, project P05-TIC-00276.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-88309-8_9
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-88309-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cobb, B., Shenoy, P.P., Rumí, R.: Approximating probability density functions with mixtures of truncated exponentials. Stat. and Computing 16, 293–308 (2006)

    CrossRef  MathSciNet  Google Scholar 

  2. Fernández, A., Morales, M., Salmerón, A.: Tree augmented naive Bayes for regression using mixtures of truncated exponentials: Applications to higher education management. In: R. Berthold, M., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 59–69. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  3. Frank, E., Trigg, L., Holmes, G., Witten, I.H.: Technical note: Naive Bayes for regression. Machine Learning 41, 5–25 (2000)

    CrossRef  Google Scholar 

  4. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    MATH  CrossRef  Google Scholar 

  5. Lucas, P.: Restricted Bayesian network structure learning. In: Proceedings of the 1st European Workshop on Probabilistic Graphical Models (PGM 2002) (2002)

    Google Scholar 

  6. Moral, S., Rumí, R., Salmerón, A.: Mixtures of truncated exponentials in hybrid Bayesian networks. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 135–143. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  7. Morales, M., Rodríguez, C., Salmerón, A.: Selective naive Bayes for regression using mixtures of truncated exponentials. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 15, 697–716 (2007)

    MATH  CrossRef  MathSciNet  Google Scholar 

  8. Pearl, J.: Probabilistic reasoning in intelligent systems. Morgan-Kaufmann, San Francisco (1988)

    Google Scholar 

  9. Ruiz, R., Riquelme, J., Aguilar-Ruiz, J.S.: Incremental wrapper-based gene selection from microarray data for cancer classification. Pattern Recognition 39, 2383–2392 (2006)

    CrossRef  Google Scholar 

  10. Rumí, R., Salmerón, A.: Approximate probability propagation with mixtures of truncated exponentials. Int. Jnl. of Approximate Reasoning 45, 191–210 (2007)

    MATH  CrossRef  Google Scholar 

  11. Rumí, R., Salmerón, A., Moral, S.: Estimating mixtures of truncated exponentials in hybrid Bayesian networks. Test 15, 397–421 (2006)

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. Sahami, M.: Learning limited dependence Bayesian classifiers. In: Second International Conference on Knowledge Discovery in Databases, pp. 335–338 (1996)

    Google Scholar 

  13. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous cases. In: Procs. of the Poster Papers of the European Conf. on Machine Learning, pp. 128–137 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández, A., Salmerón, A. (2008). Extension of Bayesian Network Classifiers to Regression Problems. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds) Advances in Artificial Intelligence – IBERAMIA 2008. IBERAMIA 2008. Lecture Notes in Computer Science(), vol 5290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88309-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88309-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88308-1

  • Online ISBN: 978-3-540-88309-8

  • eBook Packages: Computer ScienceComputer Science (R0)