Abstract
In this paper we describe a heuristic method, based on graph-partitioning algorithms, with the purpose of improving the demarcation of areas for police patrolling. This demarcation seeks to homogenize the number of crimes among the patrol regions. If the map of a particular region is taken as a graph, we can say that the problem faced by police forces (typically preventive police) is similar to the problem of finding balanced connected q partitions of graphs (BCPq). Since this is a problem belonging to the NP-Hard class, approximate algorithms are the most suitable for solving such a problem. The method described in this article obtains results nearest those considered optimal for the more general case of BCPq, for q ≥ 2.
Keywords
- approximate algorithm
- graphs
- heuristic method
- balanced connected partition
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Sys. Tech. J., 291–307 (1970)
Fiduccia, C.M., Matteyses, R.M.: A linear time heuristic for improving network partitions. In: 19th Design Automaton Conference, pp. 175–181 (1982)
Chlebíková, J.: Approximating the maximally balanced connected partition problem in graphs. Information Processing Letters 60, 225–230 (1996)
Chataigner, F., Salgado, L.R.B., Wakabayashi, Y.: Approximability and inaproximability results on balanced connected partitions of graphs. Discrete Mathematics and Theoretical Computer Science (DMTCS) 9, 177–192 (2007)
Lucindo, R.P.F.L.: Partição de Grafos em Subgrafos Conexos Balanceados. Dissertação de mestrado, Universidade de São Paulo (2007)
Heath, M.T., Raghavan, P.: A Cartesian Parallel Nested Dissection Algorithm. SIAM Journal on Matrix Analysis and Applications (1994)
Pereira, M.R.: Particionamento Automático de Restrições. Tese de Doutorado, Universidade Federal do Rio de Janeiro (COPPE) (2006)
Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. Technical Report TR 95-035. Departament of Computer Science. University of Minnesota (1995)
Salgado, L.R.B.: Algoritmos de Aproximação para Partições Conexas em Grafos. Tese de doutorado, Universidade de São Paulo (2004)
Moretti, C.O., Bittencourt, T.N., André, J.C., Martha, L.F.: Algoritmos Automáticos de Partição de Domínio. Escola Politécnica da Universidade de São Paulo, Boletim Técnico, BT/PEF-9803 (1998) ISSN 0103-9822
Simon, H.D., Teng, S.H.: Partitioning of Unstructured Problems for Parallel Processing. Computing Systems in Engineering 2, 135–148 (1991)
Gersting, J.L.: Mathematical Structures for Computer Science, 6th edn. W.H. Freeman, New York (2006)
Jung. Java Universal Network/Graph Framework (2003) (Last access: February 14 , 2008), http://jung.sourceforge.net/index.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Assunção, T., Furtado, V. (2008). A Heuristic Method for Balanced Graph Partitioning: An Application for the Demarcation of Preventive Police Patrol Areas. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds) Advances in Artificial Intelligence – IBERAMIA 2008. IBERAMIA 2008. Lecture Notes in Computer Science(), vol 5290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88309-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-88309-8_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88308-1
Online ISBN: 978-3-540-88309-8
eBook Packages: Computer ScienceComputer Science (R0)