Skip to main content

A Propositional Dynamic Logic Approach for Order of Magnitude Reasoning

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5290)

Abstract

We introduce a Propositional Dynamic Logic for order of magnitude reasoning in order to formalize qualitative operations of sum and product. This new logic has enough expressive power to consider, for example, the concept of closeness, and to study some interesting properties for the qualitative operations, together with the logical definability of these properties. Finally, we show the applicability of our approach on the basis of some examples.

Keywords

  • Modal Logic
  • Expressive Power
  • Dynamic Logic
  • Closeness Relation
  • Hybrid Logic

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Partially supported by projects TIN2006-15455-C03-01 and P6-FQM-02049.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-88309-8_2
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-88309-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Areces, C., ten Cate, B.: Hybrid Logics. In: Blackburn, P., Van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3, pp. 821–868. Elsevier, Amsterdam (2007)

    Google Scholar 

  2. Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-Dimensional Modal Logic as a Framework for Spatio-Temporal Reasoning. Applied Intelligence 17(3), 239–251 (2002)

    MATH  CrossRef  Google Scholar 

  3. Benthem, J., Eijck, J., Kooi, B.: Logics of communication and change. Information and Computation 204(11), 1620–1662 (2006)

    MATH  CrossRef  MathSciNet  Google Scholar 

  4. Blackburn, P., Van Benthem, J.: Modal Logic: A semantic perspective. In: Blackburn, P., Van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3, pp. 58–61. Elsevier, Amsterdam (2007)

    Google Scholar 

  5. Bollig, B., Kuske, D., Meinecke, I.: Propositional dynamic logic for message-passing systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 303–315. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  6. Bugaychenko, D., Soloviev, I.: MASL: A logic for the specification of multiagent real-time systems. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 183–192. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  7. Burrieza, A., Muñoz-Velasco, E., Ojeda-Aciego, M.: A Logic for Order of Magnitude Reasoning with Negligibility, Non-closeness and Distance. In: Borrajo, D., Castillo, L., Corchado, J.M. (eds.) CAEPIA 2007. LNCS (LNAI), vol. 4788, pp. 210–219. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  8. Burrieza, A., Ojeda-Aciego, M.: A multimodal logic approach to order of magnitude qualitative reasoning with comparability and negligibility relations. Fundamenta Informaticae 68, 21–46 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Burrieza, A., Ojeda-Aciego, M., Orłowska, E.: Relational approach to order of magnitude reasoning. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2006. LNCS (LNAI), vol. 4342, pp. 105–124. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  10. Davis, E.: Order of Magnitude Comparisons of Distance. Journal of Artificial Intelligence Research 10, 1–38 (1999)

    MATH  MathSciNet  Google Scholar 

  11. Duckham, M., Lingham, J., Mason, K., Worboys, M.: Qualitative reasoning about consistency in geographic information. Information Sciences 176(6,22), 601–627 (2006)

    CrossRef  Google Scholar 

  12. Golińska-Pilarek, J., Muñoz-Velasco, E.: Relational approach for a logic for order of magnitude qualitative reasoning with negligibility, non-closeness and distance. Technical Report (2008)

    Google Scholar 

  13. Harel, D., Kozen, D., Tiury: Dynamic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 4, pp. 99–218 (2002)

    Google Scholar 

  14. Heinemann, B.: A PDL-like logic of knowledge acquisition. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 146–157. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  15. Mirkowska, C., Salwicki, A.: Algorithmic Logic. Kluwer Academic Publishers, Norwell (1987)

    MATH  Google Scholar 

  16. Nayak, P.: Causal Approximations. Artificial Intelligence 70, 277–334 (1994)

    MATH  CrossRef  MathSciNet  Google Scholar 

  17. Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Information and Computation 93(2), 263–332 (1991)

    MATH  CrossRef  MathSciNet  Google Scholar 

  18. Piera, N., Agell, N.: Binary Relations for Qualitative Reasoning. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 267–271 (1992)

    Google Scholar 

  19. Raiman, O.: Order of magnitude reasoning. Artificial Intelligence 51, 11–38 (1991)

    CrossRef  Google Scholar 

  20. Sanchez, M., Prats, F., Piera, N.: Una formalización de relaciones de comparabilidad en modelos cualitativos. Boletín de la AEPIA (Bulletin of the Spanish Association for AI) 6, 15–22 (1996)

    Google Scholar 

  21. Shults, B., Kuipers, B.J.: Proving properties of continuous systems: qualitative simulation and temporal logic. Artificial Intelligence 92, 91–129 (1997)

    MATH  CrossRef  MathSciNet  Google Scholar 

  22. Travé-Massuyès, L., Ironi, L., Dague, P.: Mathematical Foundations of Qualitative Reasoning. AI Magazine, American Asociation for Artificial Intelligence, 91–106 (2003)

    Google Scholar 

  23. Travé-Massuyès, L., Prats, F., Sánchez, M., Agell, N.: Relative and absolute order-of-magnitude models unified. Annals of Mathematics and Artificial Intelligence 45, 323–341 (2005)

    MATH  CrossRef  MathSciNet  Google Scholar 

  24. Wolter, F., Zakharyaschev, M.: Qualitative spatio-temporal representation and reasoning: a computational perspective. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burrieza, A., Muñoz-Velasco, E., Ojeda-Aciego, M. (2008). A Propositional Dynamic Logic Approach for Order of Magnitude Reasoning. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds) Advances in Artificial Intelligence – IBERAMIA 2008. IBERAMIA 2008. Lecture Notes in Computer Science(), vol 5290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88309-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88309-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88308-1

  • Online ISBN: 978-3-540-88309-8

  • eBook Packages: Computer ScienceComputer Science (R0)